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1 Introduction

How to provide agents with sufficient motivation to do what society – or its
proxy in the guise of a center or social planner – wants them to do is the subject
of incentive theory. The theory has normative force whenever, metaphorically
speaking, the invisible hand of the market fails to provide such motivation auto-
matically. Market failure can come about either because markets are imperfect
in some way or because they do not exist at all. Indeed, a leading example of a
non-market environment is the internal organization of a large corporation. Al-
fred Chandler (1977) made just this point when he gave his study of the modern
American enterprise the titleThe Visible Hand.

The study of these large enterprises – which itself is an enterprise that is
currently blossoming – has drawn on incentive theory in a fundamental way.
And it is not surprising that Roy Radner – who had a long-standing fascination
and more than casual personal acquaintance with large organizations – should
have been inspired to make important contributions to this theory.

In this essay, I shall provide an outline of some of the major results in
incentive theory with particular attention to Radner’s work on the subject.

2 A simple model of a team

Let me begin with one of the first formal attempts to model organizations, viz,
team theory, whose creation is due to Marschak and Radner (1972). LetΘ be
the set of possible states of the world, and for eachθ ∈ Θ, let p(θ) be the prior
probability of θ. There aren agents, indexed byi = 1, ..., n. Each agenti has
an action spaceAi and a private signal spaceSi . Both of these may in part be
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exogenous and in part the choice of the team (or team “designer”).Si can be
thought of as a partition ofΘ. That is, each signalsi ∈ Si corresponds to a subset
of Θ. Given the vector of signalss = (s1, ..., sn ), let π(θ | s) be the distribution
of θ (derived fromp(θ) using Bayes’ rule) conditional ons. In addition to the
n agents, the center (or CEO, social planner, etc.), whom we shall designate as
agent 0, may be an active participant, in which case he has an action spaceA0

(for simplicity, let us assume, however, that he observes no private signals, so
that we can dispense withS0).

The team is interested in implementing acollective choice rule, that is, a
rule that specifies all agents’ actions as a function of the available information
s. Thus a collective choice rulef is a mapping

f : S1 × ... × Sn → A0 × ... × An .

Much of team theory concerns the question of what constitutes the best way
for agents to communicate with one another in order to implement the desired
collective choice rule, assuming that communication is costly. A common sim-
plifying assumption in this theory is that all agents and the center share the
same objectives. Incentive theory, however, gains much of its interest from the
presumption the agents havedifferent preferences. Let us suppose that agent
i ’s preferences can be represented by the (von Neumann-Morgenstern) utility
function

ui (a, θ),

wherea = (a0, ..., an ). The fact agenti ’s payoff depends on other agents’ actions
embodies the idea that there may be externalities to actions. Similarly, the center
has utility function

u0(a, θ),

which, if the center is just a surrogate for the group of agents as a whole, may
take the form

n∑
i=1

λi ui (a, θ).

Hereλi is the “welfare weight” for agenti . Usually, in both team and incentive
theory, the functionf is chosen to maximize the expectation ofu0, i.e.,

f (s) ∈ arg max
a

∑
θ∈Θ

u0(a, θ)π(θ | s). (1)

3 Adverse selection

For the time being, let us drop the actionsa1, ..., an (but not a0). Then the
incentive problem is how to ensure that the center’s actiona0 properly reflects
agents’ informations (in the sense of satisfying (1)), in view of the fact that the
signals are private information. Models like this, where the major substantive
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difficulty is the private nature of information, are often called problems ofadverse
selection (or hidden information).

The solution to an adverse selection problem is normally formulated as an
incentive mechanism (also variously called a “game form,” “outcome function,”
“contract,” or “constitution”). Suppose that each agenti is allocated a “message”
spaceMi . A messagemi ∈ Mi can be thought of as agenti ’s announcement
about his signalsi (but this interpretation is not necessary). Then an incentive
mechanismg is a function

g : M1 × ... × Mn → A0.

We interpret this mechanism as specifying that the center will take actiong(m) ∈
A0 if the messages arem = (m1, ..., mn ). Thus g(m) is called theoutcome of
the mechanism. For each vector of signalss, there will be a corresponding
equilibrium (perhaps more than one) of the incentive mechanism (where each
agenti evaluates the outcomeg(m) using his utility functionui ). Of course,
exactly what an equilibrium is will depend on the solution concept that pertains.
For a given solution concept, letEg(s) be the equilibrium outcome (for simplicity,
we suppose that the equilibrium outcome is unique). If, for alls,

f (s) = Eg(s), (2)

we say thatg implements f (or thatf is implemented byg) with respect to the so-
lution concept. Much of the incentive literature consists of characterizing which
social choice rules are implementable in this sense, with respect to particular
solution concepts.

4 Adverse selection with dominant strategies

By far the simplest (and strongest) solution concept is equilibrium in dominant
strategies. Agenti with signalsi has adominant strategy mi (si ) for mechanism
g if mi (si ) solves

max
mi

∑
θ

ui (g(mi , m−i ), θ)πi (θ | si ) for all m−i ,

whereπi (θ | si ) is the distribution ofθ conditional onsi and m−i is the vector
of other agents’ messages.

Having a dominant strategy makes life easy for agenti because it obviates the
need for him to form beliefs about what other players know and how they behave.
Clearly, requiring that an equilibrium be independent of beliefs is demanding.
Nevertheless, Groves (1973) showed that, in a special but important case of the
Marschak-Radner framework, there is a large class of collective choice rules that
are implementable. Specifically, suppose that the center’s actiona0 takes the
form

a0 = (x , y1, ..., yn ),
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wherex can be interpreted as the choice of a public good and theyi ’s (which
are scalars) are transfers of a private good (or money). Assume, moreover, that
each agenti ’s utility takes the form

ui (a0, θ) = vi (x , si ) + yi . (3)

That is, utility is quasi-linear. Then, as Groves demonstrated, anyf (s) =
(x (s), y1(s), ..., yn (s)) for which

x (s) ∈ arg max
x

n∑
i=1

vi (x , si ) for all s (4)

is implementable in dominant strategies provided that eachyi (s) takes the form

yi (s) ≡
∑
j/=i

vj (x (s), sj ) + ki (s−i ), (5)

wheres−i is the vector of signals excluding that of agenti andki (·) is an arbitrary
function ofs−i . (Notice that (4) is the requirement that the public good be chosen
to maximize social surplus.)

To see this, suppose that agents are confronted with a mechanism in which
each agenti is asked to report a signal value ˆsi ∈ Si , and the outcome, given
reports ˆs = (ŝ1, ..., ŝn ), is (x (ŝ), y1(ŝ), ..., yn (ŝ)), where x (·) and (y1(·), ..., yn (·))
satisfy (4) and (5) respectively. Then, given (3), agenti ’s maximization problem
is

max
ŝi


vi (x (ŝi , ŝ−i ), si ) +

∑
j/=i

vj (x (ŝi , ŝ−i ), ŝj ) + ki (ŝ−i )


 . (6)

By varying ŝi , agenti can varyx (ŝi , ŝ−i ). But, by definition ofx (s),

x (si , ŝ−i ) = arg max
x


vi (x , si ) +

∑
j/=i

vj (x , ŝj )


 .

Hence ˆsi = si solves (6). That is, it is a dominant strategy for agenti to tell the
truth, establishing that (x (s), y1(s), ..., yn (s)) is implementable.

Green and Laffont (1979) showed, in fact, that any implementable social
choice rule satisfying (4)must satisfy (5). To understand why this is so,1 notice
first that if mechanismg : M1×...×Mn → A0 implements a collective choice rule
f in dominant strategies and if, for alli and all si , mi (si ) is agenti ’s dominant
strategy when his signal issi , theng∗ where

g∗(s1, ..., sn ) ≡ g(m1(s1), ..., mn (sn ))

also implementsf .2 Observe thatg∗ is a “direct revelation” mechanism in the
sense that strategies consist of announcing a signal, and it is a dominant strategy

1 The following argument is drawn from Laffont and Maskin (1980).
2 Actually, it is conceivable that, in going fromg to g∗, we might introduce additional, non-

optimal equilibria. Although this is potentially a serious problem, we shall ignore it here (but see
Dasgupta et al. (1979)).
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for agents to announce signals truthfully. Thus, it suffices to restrict attention to
direct revelation mechanisms when searching for mechanisms that implement a
collective choice rule. Now, suppose thatf (s) = (x (s), y1(s), ..., yn (s)) satisfies
(4) and is implementable in dominant strategies. Suppose that, for alli , Si is an
open interval of real numbers,vi (·, ·) is a twice differentiable function ofx and
si (with ∂vi

∂x > 0, ∂2vi
∂x2 < 0, and ∂2vi

∂x∂si
> 0), andx (·) andyi (·) are differentiable

functions ofsi . Since we can restrict attention to direct revelation mechanisms,
the fact thatf is implementable implies that, for allsi ands−i ,

si ∈ arg max
ŝi

[
vi (x (ŝi , s−i ), si ) + yi (ŝi , s−i )

]
.

Hence
∂vi

∂x

(
x (si , s−i

)
, si )

∂x
∂si

(si , s−i ) +
∂yi

∂si
(si , s−i ) = 0. (7)

Now from the above analysis, we know that one solution to the differential
equation (7) isyi (s) =

∑
j/=i vj (x (s), sj ). Moreover, from the theory of differential

equations, we know that all solutions differ by a constantki (s−i ). Hence, we
can conclude that (5) holds.

The form (3) embodies the assumption ofprivate values: agenti ’s payoff
depends onθ only through his signalsi , i.e., in particular, his payoff does not
depend ons−i . If we relax this assumption and allows−i to affect vi , we
are in the realm ofcommon values. Radner and Williams (1988) showed that
f (s) = (x (s), y1(s), ..., yn (s)) can be implemented in dominant strategies even
when there are common values, ifvi takes the form

vi (x , s) = wi (x , si ) + zi (s). (8)

To see this, observe that when (8) holds and agenti is confronted with the direct
revelation mechanism (x (ŝ), y1(ŝ), ..., ŷn (ŝ)) satisfying (4) and

y�(ŝ) =
∑
j/=�

wj
(
x (ŝj , ŝ−j ), ŝj

)
+ k�

(
ŝ−�

)
for all 
,

his maximization problem is

max
ŝi


wi (x (ŝi , ŝ−i ), si ) + zi (si , s−i ) +

∑
j/=i

wj (x (ŝi , ŝ−i ), ŝj ) + ki (ŝ−i )


 . (9)

But becausezi (si , s−i ) does not depend on ˆsi , ŝi = si solves (9), establishing that
it is a dominant strategy fori to tell the truth.

Radner and Williams went a step further, in fact, and showed that, with com-
mon values, (8)must hold for a collective choice rulef (s) = (x (s), y1(s), ..., yn (s))
satisfying (4) to be implementable. To see this, let us make the same differen-

tiability assumptions as before (with the additional assumption that∂2vj

∂x∂si
≥ 0

for j /= i ). Suppose thatf is implementable by direct revelation mechanism
(x (ŝ), y1(ŝ), ..., yn (ŝ)). Then, analogous to (7), we obtain the following first-order
condition for agenti :
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∂vi

∂x

(
x (si , ŝ−i

)
, si , s−i )

∂x
∂si

(si , ŝ−i ) +
∂yi

∂si
(si , ŝ−i ) (10)

= 0 for all si , s−i , and ŝ−i .

Because∂2vi
∂x∂si

> 0, ∂2vi
∂x2 < 0, and ∂2vj

∂x∂si
≥ 0, we have∂x

∂si
> 0.3 Hence if, given

si and ŝ−i , (10) is to hold for alls−i , we must have ∂2vi
∂x∂s−i

= 0. Hence,vi must
be additively separable betweenx ands−i , i.e., it takes the form (8).

5 Adverse selection: Other solution concepts

The positive results for dominant strategies in the case of quasi-linear prefer-
ences do not readily generalize to significantly broader environments, as the
results of Gibbard (1973), Hurwicz (1972), and Satterthwaite (1975) make clear.
Accordingly, a large literature has developed in which various species of Nash
equilibrium (see Moore 1992 for a recent survey) or Bayesian equilibrium (see
Palfrey 1992) are appealed to instead.

One principle that this literature makes clear is that typically the more that
Nash or Bayesian equilibrium is refined – i.e., the more restrictive the definition
of equilibrium – thebigger the class of implementable collective choice rules
becomes. At first this principle may seem at odds with the foregoing discussion.
After all, it was precisely because insufficiently many collective choice rules
were implementable in dominant strategies that the solution concept was relaxed.
The paradox is resolved, however, when one notices that, in order to satisfy
equation (2), not only must there be an equilibrium (a requirement which is
hard to satisfy when dominant strategy equilibrium is the solution concept) but
there must be no equilibrium outcomesother than f (s) (a requirement which is
more problematic for Nash and Bayesian equilibrium). By refining the Nash
and Bayesian concepts (for which the existence of equilibrium is usually not a
problem), there is, therefore, hope of eliminating the unwanted equilibria.

6 Moral hazard

We temporarily left actions (a1, ..., an ) out of the model above in order to con-
centrate on pure adverse selection, but we can readily restore them to that model
if these actions areperfectly observable to the center. Indeed, in that case we can
regard (a1, ..., an ) as part of the center’s choicea0, since he can simply “order”

3 To see this, note that the first-order condition determiningx (s) is
∑n

j=1

∂vj
∂x (x (s), s) = 0.

Differentiating this identity with respect tosi , we obtain

n∑
j=1

∂2vj

∂x2

∂x

∂si
+

n∑
j=1

∂2vj

∂x∂si
= 0,

from which the conclusion follows.
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agents to choose the desired actions. The more difficult problem arises when the
ai ’s are only imperfectly observable – the case ofmoral hazard.

Assume, therefore, that the center cannot observe (a1, ..., an ) but only a noisy
signal z ∈ Z . Let q(z | a1, ..., an ) be the distribution ofz conditional on
(a1, ..., an ). We will think of the center as choosinga0 contingent on the real-
ization of z . Hence, it will be convenient to suppose that the agents first (and
simultaneously) choose their actions, and that then, afterz is realized, the center
choosesa0. Because I wish to focus on the case of “pure” moral hazard, I will
drop the signalss = (s1, ..., sn ). Hence, fori = 0, 1, ..., n, we can write agenti ’s
utility as

φi (a0(·), a1, ..., an ) =
∑
z∈Z

ui (a0(z ), a1, ..., an )q(z | a1, ..., an ).

7 The principal-agent relationship

Suppose thatn = 1 (so that there is just one agent) and that the center’s payoff
depends ona1 only throughz :

φ0(a0(·), a1) =
∑
z∈Z

r0(a0(z ), z )q(z | a1),

wherer0(·, ·) is a function ofa0 andz . Assume, finally, thatA0 consists of the
real numbers and thatA1 is a set of nonnegative numbers (we can think ofa0

as a monetary transfer anda1 as an effort level). Then we are in the standard
principal-agent framework (the center is the principal).

Let us first consider the case in which the principal’s and agent’s payoffs are
linear in a0. Specifically suppose that

r0(a0, z ) = z − a0

and
u1(a0, a1) = a0 − 1

8a1,

wherez is the output produced by the agent (and which accrues to the principal),
anda1 ∈ {0, 1} (i.e., the agent can either “work” and seta1 = 1, or “shirk” and
seta1 = 0). Let us suppose that if the agent works, there is an equal chance of
high (z = 2) or low (z = 0) output. But if he shirks, output is low for sure. That
is,

Pr{z = 2 | a1 = 1} = Pr{z = 0 | a1 = 1} =
1
2

and Pr{z = 0 | a1 = 0} = 1.

Because expected net surplus from the agent’s working
(

1
2 · 2 − 1

8

)
is positive,

it is efficient for the agent to work (i.e., seta1 = 1). Thus, because payoffs are
linear in a0, the Pareto frontier (the locus of Pareto optimal payoffs) is the
straight linev0 + v1 = 7

8, wherev0 andv1 are the principal’s and agent’s payoffs,
respectively. Now for the agent to be induced to work, his monetary payments
when output is high (a0(2)) or low (a0(0)) must be such that
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1
2

a0(2) +
1
2

a0(0) − 1
8

≥ a0(0). (11)

Hence, in particular, the principal and agent can sustain the expected payoffs(
1
2, 3

8

)
on the Pareto frontier by agreeing on monetary paymentsa0(2) = 3

4 and
a0(0) = 1

4.
Next, suppose instead that the Pareto frontier isnonlinear. Specifically,

assume that
r0(a0, z ) = z − a0

u1(a0, a1) = a0 − 1
4a2

0 − 1
8a1,

but that the model is otherwise the same as before. Notice that the agent is now
risk-averse with respect to his monetary payment.

Observe that ifa1 = 0 (i.e., the agent shirks), then either the principal’s or
the agent’s payoff must be non-positive. Hence, assuming that a player has
the option not to participate if his payoff is negative, it remains efficient for
the agent to work, i.e., to choosea1 = 1. To derive the Pareto frontier, take
v0 ≡ r0 (a0, 1) = 1 − a0 and v1 ≡ u1 (a0, 1) = a0 − 1

4a2
0 − 1

8. Replacinga0 by
1 − v0 (using the first equation) in the second equation, we obtain

v1 =
7
8

− v0 − 1
4

(1 − v0)2 .

Because this curve is strictly concave, convex combination of points on the
frontier lie strictly below. This implies that points on the frontier can no longer
be sustained since in order to induce the agent to work it must be the case that
a0(2) > a0(0); i.e., the agent’s payoff is a convex combination of two different
points.

Suppose, however, that this principal-agent model is repeated infinitely many
times and that players maximize their discounted sum of payoffs using discount
factor δ. Then, the principal maximizes

E
∞∑
t=0

δt (z t − at
0)

and the agent maximizes

E
∞∑
t=0

δt

(
at

0 − (at
0)2 − 1

8
at

1

)
,

where, for eacht , z t is the period-t realization ofz andat
0 andat

1 are the choices
of a0 anda1 in period t .

Even in the repeated game, Pareto optimal points are unattainable as equilib-
ria. To see this, note that if(v0, v1) are the average payoffs4 of a Pareto optimal

4 If
(
v′

0, v
′
1

)
are a pair of total payoffs in the repeated game, then the corresponding average

payoffs(v0, v1) are those that would on average have to accure every period to sum to
(
v′

0, v
′
1

)
, i.e.,(

v′
0, v

′
1

)
=

(v0, v1)

1 − δ
.



Roy Radner and incentive theory 319

perfect Bayesian equilibrium of the repeated game, then

(v0, v1) = (1 − δ)
(
v1

0, v
1
1

)
+ δ

(
1
2

(v0(2), v1(2)) +
1
2

(v0 (0) , v1 (0))

)
, (12)

where (v1
0, v

1
1) are the first period equilibrium payoffs and, forz = 0, 2, (v0(z ),

v1(z )) are the average continuation equilibrium payoffs (i.e., the average equi-
librium payoffs starting in period 2) following the realization of outputz in the
first period. Now if(v0, v1) correspond to a Pareto optimum, then from (12), so
must

(
v1

0, v
1
1

)
and 1

2 (v0(2), v1(2)) + 1
2 (v0(0), v1 (0)). But since Pareto optimality

requires that the agent be induced to work in the first period, we must have
v1 (2) > v1 (0). Moreover, because the Pareto frontier is strictly concave, this
implies that 1

2 (v0(2), v1(2)) + 1
2 (v0 (0) , v1 (0)) cannot be Pareto optimal, and so

neither can(v0, v1).
Nevertheless, as Radner (1981) and (1985) showed, any point in theinterior

of the utility possibility set (the UPS is the set of payoffs that are feasible—
including those obtained by randomization—in the one-shot model), no matter
how close to the Pareto frontier, can be attained as the average payoffs of a
perfect Bayesian equilibrium (PBE) of the repeated game, provided thatδ is
near enough 1. To see this, choose smallε > 0 and consider the interior point(

1
2 − ε, 5

16 − ε
)

near the Pareto optimal point
(

1
2, 5

16

)
. Let B be the ball of radius

ε around the point
(

1
2 − ε, 5

16 − ε
)
. I will argue that, forδ near enough 1, any

point (v0, v1) in B can be “decomposed” in the sense that there exista1
0 and

(v0(2), v1(2)) , (v0 (0) , v1 (0)) ∈ B , (13)

such that

(v0, v1) = (1 − δ)

(
1 − a1

0 , a1
0 − 1

4

(
a1

0

)2 − 1
8

)

+δ

(
1
2

(v0 (2) , v1 (2)) +
1
2

(v0 (0) , v1 (0))

)
(14)

and

(1 − δ)

(
a1

0 − 1
4

(
a1

0

)2 − 1
8

)
+ δ

(
1
2
v1 (2) +

1
2
v1 (0)

)

≥ (1 − δ)

(
a1

0 − 1
4

(
a1

0

)2
)

+ δv1 (0) . (15)

Establishing that, for givenδ, all points inB can be decomposed according
to (13)-(15) allows us to conclude that all points inB correspond to PBE’s for
discount factorδ. Indeed, we can iterativelyconstruct the PBE corresponding
to (v0, v1). Specifically, choosea0 = a1

0 and a1 = 1 as the first-period actions.
Let (v0(2), v1(2)) and(v0 (0) , v1 (0)) be the continuation payoffs after high and
low output respectively. Because (15) holds, the agent does not have the in-
centive to deviate from working. Hence, the first-period behavior is consistent
with equilibrium. But from (13), both(v0(2), v1(2)) and (v0 (0) , v1 (0)) can be
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decomposed̀a la (13)-(15). These decompositions will determine the equilibrium
second-period behavior following high and low output. Continuing in the same
way, we can derive the equilibrium behavior for all subsequent periods, thereby
completing the construction.

It remains, therefore, only to show that we can actually perform the decom-
position. Consider the point

(
1
2, 5

16 − ε
)

in B . Let

a1
0 = 2−

√
9 + 16ε

2
(16)

and

(v0(2), v1(2)) =

((
3
2

− δ − (1 − δ)
√

9 + 16ε
2

)
/δ,

5
16

− ε +
1 − δ

8δ

)
(17)

(v0 (0) , v1 (0)) =

((
3
2

− δ − (1 − δ)
√

9 + 16ε
2

)
/δ,

5
16

− ε − 1 − δ

8δ

)
. (18)

Simple substitution verifies that (14) and (15) hold when the values given by
(16)-(18) are used. As for (13), note that, becauseB is a ball, the vertical distance

from the pointp =
((

3
2 − δ − (1−δ)

√
9+16ε

2

)
/δ, 5

16 − ε
)

to B ’s boundary is on

the order of thesquare root of the horizontal distancex from p to
(

1
2, 5

16 − ε
)
,

if x is small (see Fig. 1). Butx = 1−δ
2δ

(√
9 + 16ε − 3

)
and so, asδ tends to 1,x

does indeed become small. Furthermore, the vertical distance from(v0(2), v1(2))
or (v0 (0) , v1 (0)) to p is 1−δ

8δ , which (for δ near 1) is of the same order asx , and
hence less than

√
x . Hence forδ near 1,(v0(2), v1(2)) and(v0 (0) , v1 (0)) lie in

B .

Fig. 1. Decomposition of
(

1
2 , 5

16 − ε
)
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We have shown, therefore, that
(

1
2, 5

16 − ε
)

can indeed be decomposed for
δ near 1. The argument is similar for the other points ofB . Hence repetition
permits points that are nearly efficient to be attained as equilibria.

To summarize, for the agent to be induced to work in a one-shot principal-
agent relationship, his monetary payment contingent on output must be variable.
This variability has no adverse consequences if the agent is risk-neutral, but
interferes with Pareto optimality if he is risk-averse. Once the relationship is
repeated, the agent’s monetary payment no longer need be made variable; the
agent can be “punished” or “rewarded” through variations in his continuation
payoff. Furthermore, ifδ is near 1, not much variation in these payoffs is
required to provide adequate incentive —so the equilibrium shortfall from Pareto
optimality is correspondingly small. That is, repetition allows us to exploit the
fact that the Pareto frontier islocally linear.

8 Partnerships

Next letn = 2 but eliminate agent 0 (the center), so that we are now in a partner-
ship (double moral hazard) framework, i.e., neither agent can observe the other’s
action. In this setting, an efficient outcome may be impossible to implement
even if the Pareto frontier is linear. Specifically, consider the following model
based on an example in Fudenberg et al. (1994). Suppose that each player’s
actionai can equalw (“work”) or s (“shirk”). Working imposes a disutility of
3, whereas shirking is costless. There are two possible output levels,z = 0 and
z = 12. If both players work, the probability thatz = 12 is 2

3; if only one works
the probability is1

3; and if neither works it is 0. Output is divisible and can be
allocated in any way between the two agents. Agenti ’s utility is

zi − di (ai ),

wherezi is his share of total output anddi (ai ) is his disutility from actionai (i.e.,
either 0 or 3).

It is easy to verify that it is efficient for both agents to work and that the
Pareto frontier is the straight linev1 + v2 = 2. Despite the linear preferences,
however, no point on the frontier is implementable. To see this, note that to
induce playeri to work (given that the other player is working), his shares –
zi (12) andzi (0) – of the output whenz = 12 andz = 0 must satisfy

2
3

zi (12) +
1
3

zi (0) − 3 ≥ 1
3

zi (12) +
2
3

zi (0).

Hence
zi (12)− zi (0) ≥ 9 i = 1, 2. (19)

Adding the two inequalities (19) together, we obtain

12 ≥ 18,

a contradiction. Thus efficiency is not implementable.
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Informally, to induce an agent to work, the difference between the outputs
allocated to him in the high and low states must be sufficiently big (9, to be
precise, and therefore 18 if we add the two agents’ differences together). But
the difference between high and low total output is only 12. So to get both agents
to work, output has to be “thrown away” in the low state, i.e., output must be
reduced to -6, which is inefficient. An alternative to throwing away output is to
resurrect the center (agent 0). Imagine that this agent chips in two units of output
in the high state and takes away 4 in the low state. Then, agents 1 and 2 can
be induced to work without any expected efficiency loss (the center breaks even
on average: 2

32 − 1
34 = 0). This is basically Holmström’s (1982) interpretation

of the Alchian and Demsetz (1972) rationale for separation of ownership and
management in corporations: the owner can serve as a “budget-breaker” in
setting up an efficient incentive scheme for managers.

In studying the principal-agent model above, we noted that the value of
repeating the game was to exploit the fact that a concave frontier is still locally
linear. In our partnership example, however, efficiency is not implementable
even when the frontier is linear. Consequently, it should not be surprising that
repetition does not help to restore efficiency. Indeed, the partnership example
is closely related to one used by Radner et al. (1986) to illustrate the potential
inefficiency of repeated game equilibria when there is double moral hazard.

The inefficiency in our partnership example, however, turns out to depend
crucially on the fact that there are only two possible observable outcomes (this
is true as well of the Radner-Myerson-Maskin example). Indeed let us now
modify the model so that there are three possible output levels,z = 12, 8, 0. If
both agents work, the probability distribution over these levels is

(
1
3, 1

2, 1
6

)
. If

agent 1 shirks and 2 works, the distribution is
(

1
3, 0, 2

3

)
. If 1 works and 2 shirks,

it is
(
0, 1

2, 1
2

)
, and if both shirk it is (0, 0, 1).

Once again, it is efficient for both agents to work, and the Pareto frontier is
described byv1 + v2 = 2. In this case, however, it is possible to implement any
point on the frontier. Specifically, suppose we letz2(12) = 12,z1(8) = 8, and set
all the other allocations equal to zero. That is, we give agent 2 all the output
when z = 12 and agent 1 all the output whenz = 8. It is straightforward to
verify that (w, w), i.e. both agents working, is an equilibrium:

1
3

0 +
1
2

8 +
1
6

0 − 3 ≥ 1
3

0 +
2
3

0 (20)

and
1
3

12 +
1
2

0 +
1
6

0 − 3 ≥ 1
2

0 +
1
2

0. (21)

Intuitively, it makes sense to allocate agent 1 all the output whenz = 8: if
he had shirked, such an output level would not have been possible; and so the
allocation serves as an effective inducement for his working; similarly, assigning
agent 2 all the output whenz = 12 is a good way to rewardhim for working.

Mathematically, the virtue of having sufficiently many output levels (in this
case, 3) is that we can satisfy incentive constraints (20) and (21) together with
the efficiency conditions
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z1(0) + z2(0) = 0
z1(8) + z2(8) = 8

z1(12) +z2(12) = 12

simultaneously. More generally, Radner and Williams (1988) and Legros (1988)
showed that, as long as agents utilities are linear in output, then for generic
partnership games where the number of output levels is at leastm1+m2−1 (where
mi is the number of actions inAi ), efficiency is implementable. As Fudenberg
et al. (1994) showed, a similar result obtains for a repeated partnership (withδ
near 1) without the hypothesis that the Pareto frontier is linear.

9 Conclusion

Roy Radner once expressed the wish that a book as elegant as Debreu’s (1957)
analysis of competitive markets might one day be written about nonmarket in-
stitutions (specifically, the large firm). His own work on teams and incentives
(not to mention his many contributions to our understanding of information, and
organizational structure) constitutes a good start toward making that wish come
true.
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