

Summary

- · Model monopoly nonlinear pricing of network goods
- Network value depends on total usage
 - Network value for each customer may depend on their individual . usage
- Marginal network value may vary across customers Characterize optimal pricing schedules
 - · Existence of fulfilled-expectations contract
 - Uniqueness of optimal contract
 - Variation in properties with network value
- · Analyze welfare properties of contracts Surplus division between firm/customers Surplus distribution across customers
- · Study effects of entry deterrence
 - Changes in pricing
 - · Changes in welfare properties

Some related work

· Monopoly models of network goods Rohlfs (1974), Oren and Smith (1981), Oren, Smith and Wilson (1982), Economides (1996), Cabral, Salant and Woroch (1999), Fudenberg and Tirole (2000)

- · Single-dimensional monopoly price screening • Maskin and Riley (1984), Jullien (2000)
- Empirical estimates of network effects
 - Databases (Gandal 1994, 1995) • Spreadsheets (Gandal 1995, Brynjolfsson and Kemerer 1996)
 - Word processing software (Grohn 1999)
 - Networking equipment (Forman 2001)

Model

- Monopoly seller of a network good
- Continuum of heterogeneous customers, indexed by type θ distributed as $F(\theta)$ with $f(\theta) > 0$, $\frac{1-F(\theta)}{f(\theta)}$ nondecreasing
- Utility functions of customer type θ : $W(q, \theta, Q) p$
 - q: individual usage of customer
 - Q: gross usage across all customers
- Key properties of $W(q, \theta, Q)$
 - Individual usage: $W_{11}(q, \theta, Q) < 0$, $W_2(q, \theta, Q) > 0$, $W_{12}(q, \theta, Q) > 0$
 - Gross usage: $W_3(q, \theta, Q) \ge 0$, $W_{13}(q, \theta, Q) \ge 0$, $W_{23}(q, \theta, Q) > 0$
- Intrinsic value function: $U(q, \theta) = W(q, \theta, 0)$
- Network value: $W(q, \theta, Q) U(q, \theta)$

Contracts: quantity-price pairs $q(\theta)$, $\tau(\theta)$

- Feasible: IC and IR
- Optimal: Given expectation of gross consumption Q, maximizes profits among all feasible contracts
- Optimal fulfilled-expectation: Optimal contract for Q under which actual consumption $\int q(\theta) dF(\theta) = Q$

Sequence of events

- Seller posts contract
- Customers form expectation ${\boldsymbol{\mathcal{Q}}}$ of gross consumption
- Based on type q and expectation ${\it Q},$ each customer chooses individual consumption q to maximize surplus
- Seller, customers get payoffs

Entry deterrence

- Incumbent monopolist
 - Customers get both intrinsic value and network value from incumbent product
- One or more potential entrants
 - Entry cost = 0
 - If entry occurs, customers who purchase get just intrinsic value from product
 - Collapses some 'dynamic' aspects of an incumbent's advantage into a static model
- Monopolist prices to deter entry, by assumption
- Problem reduces to monopoly pricing with typedependent participation constraints

Summary

- Existence, uniqueness conditions for nonlinear pricing with network effects
- Changes in usage induced by different network effects
 Just Q: No changes in usage
 - Just Q: No changes in usage
 Both Q and q: Increase in usage across all types
 - Both Q and q: Increase in usage across all types
 - Q, q and customer type: Potential further downward distortion of usage of lower types, below levels in absence of network effects
- Further changes in usage induced a costless entry threat
 May increases usage for lower types, does not affect usage for a subset of higher types, mitigates downward distortion
- Network effects (and/or an entry threat) generally improve equity in surplus distribution across different customer types
- Threat of entry can result in socially superior outcomes than actual entry, socially efficient outcome in special cases