

Digital goods are easy to pirate

w easy you have it... when I we in the snow to shoplift from

Software piracy rates are still very high

- Eastern Europe: 71%
- Latin America: 55%
- Asia/Pacific: 55%
- Middle East/Africa: 49%
- Western Europe: 35% North America: 24%
- Music, digital video,
- electronic textbooks, research, artwork,...

Piracy is impossible to eliminate Di stored

- Digital goods are easily replicated, distributed,
- Inferior substitutes can always be created
- It is hard to enforce legal deterrents

Technological deterrents are eventually hacked (at least partially)

Digital piracy needs to be effectively managed through a combination of pricing and time-varying technological deterrence

з

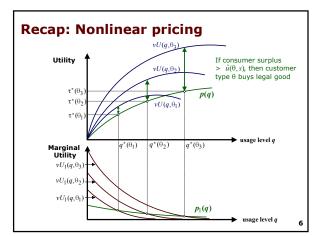
Research agenda

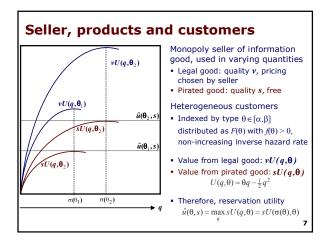
Price screening in the presence of digital piracy

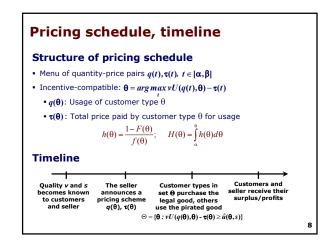
- Structure of optimal nonlinear pricing schedule
- Variation in structure of schedule at different levels of piracy
- · Effects of piracy on seller profits, consumer surplus and total surplus

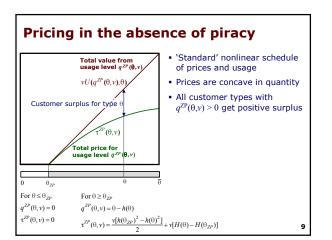
Appropriate levels of technology (DRM) protection

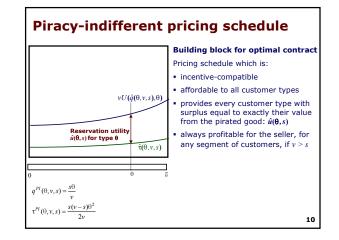
- · Profit-maximizing protection levels with/without price discrimination
- Optimal pricing and technology responses to DRM hacking

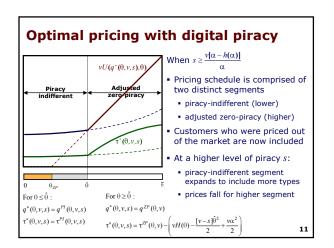

Summary of key results

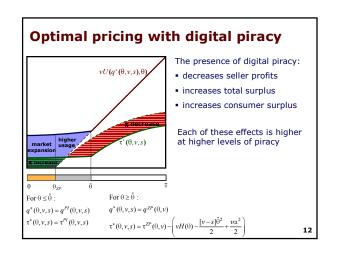

Price screening in the presence of digital piracy


- Optimal pricing schedule is a combination of two simpler schedules: (a) Zero-piracy pricing schedule (adjusted downward) (b) Piracy-indifferent pricing schedule
- Piracy can induce short-term increases in total surplus from legal usage

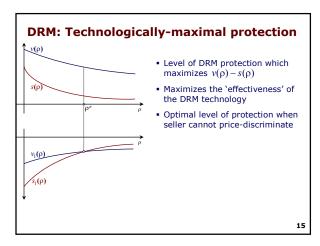

Choice of appropriate levels of technology-based protection

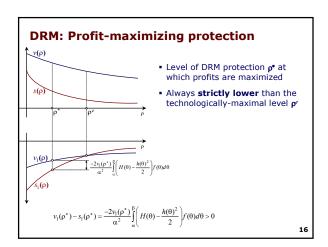

- In the absence of price-discrimination: technologically-maximal level
- · When price discriminating: strictly lower
- Trade-off between deterrence and ability to price-discriminate
- Responses to weakening of underlying protection technology can be
 - Increase protection level, reduce prices
 - Reduce protection level, sometimes increase prices Suggests need to preemptively over/under protect

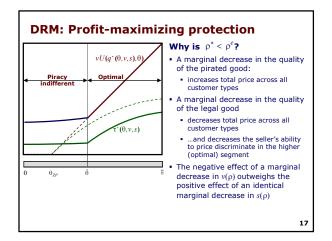


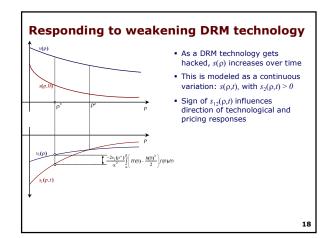


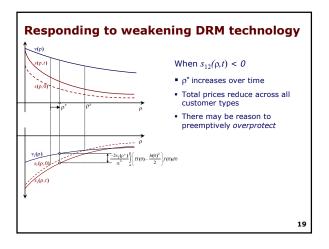
Digital rights management


Assumptions about $v(\rho)$ and $s(\rho)$


- ν(ρ) > s(ρ): The seller can make a profit
- $v_1(\rho) \le 0$, $s_1(\rho) \le 0$: DRM 'manages' rights by restricting them
- $s_1(\theta) < v_1(\theta)$: The DRM technology is effective, at least initially
- $v_{11}(\theta) \le s_{11}(\theta)$: The DRM technology has diminishing returns

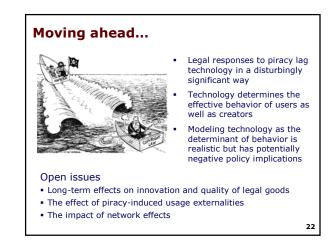

Sequence of events


Quality functions ν(ρ) and s (ρ) becomes known to customers and seller	The seller announces pricing scheme q(θ), τ(θ) and DRM-based protection level ρ	Customer types in set & purchase the legal good, others use the pirated good	Customers and seller receive their surplus and profits
	$\Theta = \{ \boldsymbol{\theta} : \boldsymbol{\nu}(\boldsymbol{\rho}) U(q(\boldsymbol{\theta}), \boldsymbol{\theta}) - \boldsymbol{\tau}(\boldsymbol{\theta}) \geq \hat{u}(\boldsymbol{\theta}, s(\boldsymbol{\rho})) \}$		


14

Responding to weakening DRM technology $\int \frac{1}{p^{(n)}} \frac{1}{p^{(n)}}$

Summary of key results


Price screening in the presence of digital piracy

- Optimal pricing schedule is a combination of two simpler schedules:
 (a) Zero-piracy pricing schedule (adjusted downward)
 - (b) Piracy-indifferent pricing schedule
- Piracy can induce short-term increases in total surplus from legal usage

Choice of appropriate levels of technology-based protection

- In the absence of price-discrimination: technologically-maximal level
- When price discriminating: strictly lower
- Trade-off between deterrence and ability to price-discriminate
- Responses to weakening of underlying protection technology can be
 Increase protection level, reduce prices
 - Reduce protection level, sometimes increase prices
 - Suggests need to preemptively over/under protect

21

