

Overview

- When is unbounded rationality a good approximation?
- Our (tentative) approach to answering this question is by studying a series of examples.
 - Choose a set of 'standard' economic models in which agents have unbounded rationality (the UR models).
 - Analyze a model of the same phenomenon in which agents have bounded rationality (the BR models).
 - Compare the "output" of the two models.
- Our first example: monopoly pricing for a network good.

A model of network goods

- A monopoly firm sells a homogeneous network good (a service, rather than a durable good).
- Unit mass of a continuum of consumers, indexed by their type $\, \theta \in [0,1] \,$ drawn from a distribution with CDF F
- If the price in any period is $\rho,$ then a consumer of type θ purchases the good in that period if

 $\theta q_E \ge p,$

where $\,q_E\,$ is the total demand $\,\underline{\rm expected}\,$ by the consumer in that period.

• Variable cost equals zero.

A discrete-time formulation

- Suppose the firm varies its price at equally-spaced time intervals *t* = 0, *h*, 2*h*, 3*h*,...
 - h is the length of the time interval (more on this later).
 - Sequence of events for a UR model
 - The firm announces its price p(t).
 - Each consumer forms an expectation of demand $q_E(t)$.
 - A consumer of type θ purchases if $\theta \ge \frac{p(t)}{q_E(t)}$.
 - The realized demand is $q(t) = 1 F\left(\frac{p(t)}{q_F(t)}\right)$.
 - The firm's profit in period t is p(t)q(t).

Outcomes in a UR model

• Since consumers are unboundedly rational, they form rational demand expectations, which are fulfilled.

$$q(t) = 1 - F\left(\frac{p(t)}{q(t)}\right).$$

- The firm sets the same price *p*(*t*) in each period, and demand is constant across time.
- For instance, if $F(\theta) = \theta$, then $q^{UR}(t) = \frac{2}{3}$, $p^{UR}(t) = \frac{2}{9}$
- Why the UR model seems implausible for this problem:
 - The extent of knowledge and computation that the model has consumers performing seems high (identifying other consumers' preferences, forecasting demand based on these preferences,...)
 - The predictions of the model do not appear to be consistent with observed pricing and demand patterns

– Make a decision based on the relative values of p(t) and $\theta q_E(t)$.

The firm announces its price p(t).

• Consumers who pay attention to p(t):

Form an expectation of demand q_E(t).

Consumers who do not pay attention to p(t) continue doing what they were doing in period (t-h)

Determine some subset of past demand q(t-h), q(t-2h),...

Sequence of events in a BR model

e

Modeling bounded "cognition"

- Attention:
 - If the length of the time interval is h, then a fraction λh of consumers of each type pay attention to p(t) in period t, and make a decision.
- Ability to forecast:
 - Unboundedly rational: $q_E(t) = q(t)$.
 - Myopic: $q_E(t) = q(t-h)$.
 - Myopic and stubborn: $q_E(t) = \gamma q(t-h) + (1-\gamma)\omega$.

A continuous-time approximation

- If $0 \le p(t) \le q(t)$, and under the following BR model:
 - Bounded attention: If the length of the time interval is h, then a fraction λh of consumers of each type actually make a decision in period t, and
 - Myopic forecasts: $q_E(t) = q(t-h)$, then the time-rate of change in demand as $h \rightarrow 0$ is:

$$q'(t) = \begin{cases} 0, q(t) = 0; \\ \lambda \left[1 - F\left(\frac{p(t)}{q(t)}\right) - q(t) \right], 0 < q(t) \le 1, 0 \le p(t) \le q(t); \\ -\infty, 0 < q(t) \le 1, p(t) > q(t). \end{cases}$$

- This law of motion remains unchanged for forecasts that are "more rational" than myopic (more on this later).

Summary of the firm's problem

Chooses the price trajectory p(t)

that maximizes: $\int e^{-rt} p(t)q(t)$

subject to the law of motion.

We can restrict our attention to stationary policies $p(t) = \alpha[q(t)]$.

The value of a policy α at an initial state q is:

 $V_{\alpha}(q) = \int e^{-rt} \alpha[q(t)]q(t), \ q(0) = q.$

The value function at an initial state q is: $V(q) = \sup_{\alpha} V_{\alpha}(q)$.

A policy is optimal if its profit attains this supremum at every state q.

Recall the UR model

- Under the UR model, demand in any period satisfies rational expectations: $q = 1 - F\left(\frac{p}{q}\right).$
- For each q, define *P*(*q*) implicitly as the largest solution of the above equation:

$$P(q) = \max\{p : q = 1 - F(\frac{p}{q})\}.$$

(also the best "stay-where-you-are" price at q).

• Under the optimal rational-expectations equilibrium, demand *q* solves:

 $q^{UR} = \arg\max[qP(q)].$

Results: Myopic consumers

1. The rational-expectations demand cannot be the steady state of an optimal price trajectory

- q is a steady state for the optimal policy α^* if

$$q(t) = q$$
 implies that $q(s) = q$ for all $s > t$.

• Theorem: The optimal rational expectations demand q^{UR} is not a steady state for the policy that this optimal for the BR model with myopic customers.

Results: Myopic consumers

- 2. Solution to the optimal dynamic pricing problem a "target policy."
- When $F(\theta) = \theta$ (uniform distribution of types), the firm's optimal pricing policy is: $\int_{-\infty}^{0} e^{-\frac{1}{2}\sigma^{*}} e^{-\frac{1}{2}\sigma^{*}}$

$$\alpha^{*}(q) = \begin{cases} 0, \ q < 0, \\ P(q), \ q = \sigma^{*}; \\ q, \ q > \sigma^{*}, \end{cases}$$

where the optimal target $\sigma^* = \frac{2\lambda}{3\lambda + r} < \frac{2}{3} = q^{UR}$.

Myopic and stubborn consumers

- Attempt to see what happens when consumers are less rational than myopic.
- Consumers base their demand forecast on a weighted average of the myopic forecast and a shared *stubborn* forecast ω.

$$q_E(t) = \gamma q(t-h) + (1-\gamma)\alpha$$

 $\omega\colon$ a fixed parameter.

- $\gamma = 1 \Longrightarrow$ consumers are purely myopic.
- $\gamma=0 \Longrightarrow$ consumers are purely stubborn.

Myopic and stubborn consumers

Preliminary results

- The monopolist's optimal price trajectory is generated by a target policy with target $\sigma(\gamma,\omega).$

Myopic and stubborn consumers

Preliminary results

- $\sigma(\gamma,\omega)$ is strictly increasing in $\gamma,$ and has the following values at its end points:

$$\sigma(0,\omega) = \frac{\lambda}{2\lambda + r}$$
$$\sigma(1,\omega) = \frac{2\lambda}{3\lambda + r}$$

Concluding remarks Target policy more realistic than REE. Model with both myopic and UR customers. Concave and convex network value functions – e.g., concave network value function of types. Competing network goods. Decisions based on local network structure. Adaptive expectations, noisy observation.