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1. Overview and motivation

This paper studies a kind of bilateral entry threat that is prevalent in a number of pairs of infor-
mation technology industries. Our motivation is best illustrated by some examples. Progress in
networking and communications technology, along with the ability to digitize and transmit voice
over IP data networks has made it feasible for the providers of cable television to enter the residen-
tial voice telephony market. Simultaneously, this technology also makes it feasible for telephone
companies to become providers of digital video entertainment over their telephone lines, which
has led them to begin threatening entry into the core business of cable television providers. The
viability of this kind of bilateral entry threat increases with technological progress that leads to
higher-bandwidth data networks, as well as more sophisticated compression algorithms. Similarly,
a move towards operating system and general-purpose hardware based product architectures in
both the cellular handset (Symbian OS, Smartphone) and handheld computing (PalmOS, Pock-
etPC) markets has led to analogous bilateral entry of firms into each others’ markets. Progress in
semiconductor technology makes the underlying hardware more powerful in each industry, leading

to a corresponding increase in the viability of this kind of bilateral entry.

This kind of technology convergence across industries presents a new set of strategic considera-
tions for incumbent firms: deciding whether to enter a rival market while simultaneously considering
the effects of their related product and pricing choices on entry deterrence and oligopoly profits
within their own market. Critical to this choice is product scope, which affects product value, the
extent of product differentiation, and the fixed costs of entry. While technological progress makes
this kind of bilateral entry more technologically viable, it is not immediately clear whether it is

profitable, or will emerge as equilibrium behavior by strategic firms.

We begin by analyzing a model of imperfect competition in which the choice of both price and
product scope is endogenous. The latter reflects the fact that in many information technology-based
industries, firms have substantial control over the scope, or the breadth of functionality provided
by their products. Developers of enterprise software suites and operating systems have broad
control over the set of diverse features and modules that can be integrated into their packages.
Manufacturers of general purpose computing chips make explicit design choices about the level

of integrated cache, degree of power consumption, multimedia and graphical support provided in



their chips, thereby affecting the chips’ performance on a variety of applications, and consequently,
the scope of devices these chips can be used in. Manufacturers of networking switches can decide
whether or not to include routing capabilities in their equipment, and if they do, also choose the

type of routing and protocols they support.

The ability to choose scope endogenously has many effects on demand and profitability. Firstly,
it provides firms with an additional degree of freedom in increasing the value of their products.
Rather than leading to a simple increase in quality (which would suggest a model of vertical
differentiation), or an emphasis on one set of features at the cost of others (characteristic of the
horizontal differentiation models that follow Hotelling, 1927 and Salop, 1979), an increase in scope

increases value for the product for a broad set of horizontally differentiated customers.

Second, increasing the scope of a product also typically increases its fixed costs while leaving
variable costs relatively unchanged (this is especially true in the software and microprocessor in-
dustries). An aspect of Microsoft’s strategy that has received somewhat less attention than their
aggressive entry into the browser market is that they have increased the product scope of their
core Windows operating system to the point where the fixed costs of entry are substantial (upto
$9 billion, according to Hall and Hall, 2000). This highlights the role that costly and endogenously

chosen product scope can play in deterring entry.

Thirdly, the extent to which an increase in product scope increases fixed costs is influenced
by progress in information technology — sometimes within the technology market, but also com-
monly in an upstream supplier industry, or in a downstream industry for a complementary product
(Economides and Salop, 1992). This has been recognized in models of general-purpose technologies
(for instance, Breshanan and Trajtenberg, 1995). Steady progress in the upstream semiconduc-
tor industry continually relaxes constraints on electronics product design, allowing firms in the
computer and home electronics industries to achieve increases in scope at a lower fixed cost. The
same logic holds for desktop software developers, whose design and architecture costs are driven by
how powerful the machines (supplied by the downstream PC industry) their software will run on
are. Additionally, development of new methodologies within the software industry, such as object
oriented technologies and software engineering, along with new tools to aid the design process also

reduce the fixed costs of increasing product scope.

Together, these factors indicate that in information technology industries, two key factors that



determine equilibrium pricing and industry concentration in standard models — the intensity of im-
perfect competition and the level of fixed costs — are no longer exogenous. In addition, the fixed cost
function itself changes rapidly over time, as technology progresses. Section 3 presents our model of
symmetric oligopoly that incorporates each of these features. We derive the equilibrium sequential
choices of product scope and price. In the absence of an entry threat, there is a unique symmetric
subgame perfect Nash equilibrium. We characterize how strategic choices and surplus vary with
changes in industry concentration and technological progress: the flexibility of product scope is
shown to moderate (rather than intensify) the effect of an increase in industry concentration on
the extent of price competition, and higher industry concentration is not necessarily socially bene-
ficial, though it always increases consumer surplus. We subsequently derive the unique equilibrium
choices of product scope and pricing that deter potential entry. Not surprisingly, higher product
scope is necessary to deter entry, though this increase may reduce total surplus. Our analysis is
more involved than existing models of oligopoly entry deterrence (Gilbert and Vives, 1986), since
competing firms also control the level of fixed costs that influence the entry decision, through their

choice of product scope.

The variation in equilibrium firm behavior induced by an entry threat forms the basis for our
model of bilateral entry, presented in Section 4. Firms in a pair of "adjacent" oligopoly markets
of the kind described above each decide whether or not to accommodate or deter entry through
their choice of product scope, and also choose whether or not to enter the adjacent industry. We
establish that there are two possible equilibria: one in which firms in each industry choose lower
product scope, enter the adjacent industry, and accommodate entry in their own, and another in
which firms in each industry choose higher product scope, do not enter the adjacent industry and

successfully deter entry into their own.

Exactly one of these two outcomes is an equilibrium for a given pair of industries. When the
profits from successfully deterring entry are lower than the profits from one’s own industry under
accommodation (this is half the total profits under the accommodate-enter equilibrium), the former
equilibrium is the unique outcome. The equilibrium in which all firms accommodate and enter is

Pareto-efficient; the one under which all firms deter entry is often not.

Based on these equilibria, we discuss how technological progress that varies the relative magni-

tude of payoffs under each strategy can lead to discontinuous shifts in industry concentration and



incumbent profits, as the equilibrium switches from bilateral deterrence to bilateral accommoda-
tion, and vice versa. One of our observations in this regard is that these sudden changes need not
be preceded by a technological shock, but can emerge as a natural strategic response to gradual
technological progress. The "competitive crash" in the computer industry in the early 1990’s, and
the current industry realignment induced by digital convergence are good illustrations, since both
were consequences of gradual (though rapid) technological progress, rather than any kind of sudden
breakthrough innovation. Our model indicates that the shift may lead to either a sudden increase
in concentration in both industries, lower product scope, higher firm profits and lower consumer
surplus, or to a diametrically opposite effect: increases in product scope, firms receding into their

core industries which become more concentrated, lower profits and higher consumer surplus.

The rest of this paper is organized as follows. Section 2 introduces our underlying model of
oligopoly with endogenous product scope and entry costs, and Section 3 derives its equilibria with
and without the threat of entry. Section 4 characterizes the equilibria for a game of bilateral entry

across two industries. Section 5 concludes and suggests directions for future work.

2. Overview of model

This section outlines our oligopoly model with endogenous and costly choice of product scope,
which builds on earlier models of monopolistic competition by von Ungern-Sternberg (1988) and

Hendel and Figueiredo (1997).

2.1. Firms and products

Each potential product is represented by a point on the unit circle. There are n firms, each of
which produces exactly one product, and who share identical production technology. Following the
prior literature (for instance, Economides, 1989), firms are symmetrically located around the unit
circle. Each firm j makes a costly choice s; € (0,00) of product scope, and a choice of price p;.
For analytical simplicity, we assume a constant unit variable cost of production c. The fixed cost
of scope depends on an exogenous state of technology T and on the level of scope s; chosen. We

make the following assumptions about the fixed cost function F'(s, 7).

1. F(s,7) > 0,Fi(s,7) > 0,F11(s,7) > 0: Fixed costs are positive, increasing and convex in



scope.

2. Fy(s,T) < 0,Fs(s,7) > 0: The cost of providing a fixed level of scope is decreasing and

convex in the state of technology 7.

3. Fia(s,7) < 0: The fixed cost of every unit increase in scope is lower at higher states of

technology.

Numbered subscripts of functions represent partial derivatives with respect to the corresponding
variable. This notation is preserved throughout the paper. The first assumption posits fixed costs
that are convex in scope, which is characteristic of many information technology products. For
example, the fixed cost of developing software is convex in the number of lines of code, and in the
number of function points, both of which increase as one expands the scope of software functionality.
Alternately, if the number of lines of code is constrained by design guidelines based on average end-
user memory or processor constraints, then adding each new functionality requires a increasing level
of investment in careful software architecture and optimization. Similarly, design costs for electronic
devices increase at an increasing rate if engineers have to incorporate increasing functionality onto

a circuit board of limited dimensions, with constraints on total battery needs and heat emission.

The next assumption describes how these fixed costs change with technological progress. For
instance, the fixed cost of delivering a specified level of functionality in a semiconductor-based
device like a cellular handset decreases continuously as the raw power of semiconductor technology
increases. This decrease in fixed costs is not due to a drop in the price of chips!. Rather, more
powerful microprocessors, DSP chips, memory chips and higher feasible levels of miniaturization
induce a lower investment requirement in product design or software architecture to deliver the
same level of functionality in a device. Analogously, when users have personal computers with
faster CPUs and more RAM, manufacturers of software can increase the size of their code base with
a lower performance impact, and therefore, can increase product scope with less careful software

architecture and optimization.

'Note that there may also be a decrease in the variable cost of production due to a decrease in the cost of chips.
This effect is likely to strengthen our results; however, in this paper, we focus on changes in fixed costs.



2.2. Consumers

There is a mass of customers of total size m distributed uniformly around the circle. The preferences
of a customer located at distance x; from firm j’s product are represented by the utility function
U(xj,s;), where

Ulzj,s5) = v — jt(s;)-

t(.) is the misfit cost function that relates product scope to misfit or transportation costs. This

function is assumed to have the following properties:

1. t(sj) > 0,t1(sj) < 0: Unit cost of misfit is positive and decreasing in scope

2. t11(sj) >0, d—i(&é;j;;g) < 0: The unit cost of misfit is sufficiently convex in scope

The shape of #(s) reflects products becoming more general-purpose and being able to satisfy
functionality requirements of a broader set of consumers better as their scope increases However,
progressive incremental benefits from increases in scope are generally diminishing. Assuming that

t(s;) is convex is necessary to ensure well-behaved best-response functions?.

Each consumer purchases exactly one product: the one that maximizes their surplus [U(z;, s;)—
pjl. As is customary in location models of product differentiation, we assume that v is high enough
so that all consumers get non-zero surplus from at least one product in equilibrium. The sequence

of events is specified independently in each subsequent section.

3. Symmetric oligopoly with and without an entry threat

This section analyzes equilibrium sequential product scope and pricing choices for the oligopoly
model outlined in Section 2, first in the absence of an entry threat, and next, when the oligopolists.
collectively make choices that deter a threat of entry. These results extend existing work on
monopolistic competition with endogenous scope (von Ungern-Sternberg, 1988) and on oligopolistic
entry deterrence (Gilbert and Vives, 1986). They also form the basis for the model of bilateral entry

deterrence which is presented in Section 4.

?The condition is equivalent to assuming that 2(¢1(s))® —#(s)t11(s) < 0. Tt is satisfied, for instance, for any mixture

n
of polynomials 3 a;s7% in which a; > 0,b; > 1.
i=1
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Figure 3.1: Illustrates the basis for thedemand functions faced by each competing firm.

3.1. Consumer choice and demand

If firm 4 chooses price and scope (p;,s;), and firm ¢ — 1 chooses price and scope (pi—1,8i—1), a

consumer located between these firms chooses product ¢ if

v—pi —xt(si) > v—pi_1 — (% — )t(si—1)- (3.1)

The consumer indifferent between firm 7 and firm ¢ — 1 is therefore located at z; ;_1, where:

1
V—pi — Tii1t(s;) =V —pi—1 — (ﬁ — Zii—1)t(si—1). (3.2)

Refer to Figure 3.1. Therefore,

Pi—1 —Pi + %t(si—ﬂ
t(si) + t(Sifl) '

(3.3)

Tii-1=

The demand received by firm ¢ from the segment between ¢ and 7 — 1 is ma; ;1. Consequently, it
follows that if firm ¢ chooses (p;, s;), and its two adjacent neighbors firm ¢ — 1 and firm 7+ 1 choose

Pi—1,8i—1), and (p;r1,S;1+1), then the demand for firm 2’s product is:
+15 Sit+

i1 — pi + Lt(sie i1 — pi + Lt(s;
Pi—1 — Di + =t(si—1)  piv1 — D ,,,(+1)> (3.4)

) Silpic1, si—1, Pit1, Si =m
Q(pz z|pz 1,8i—1,Pi+1 z+1) ( t(Si)—i—t(Si_l) t(Si)+t(3i+1)

Define 7 as the gross profit function and II as the net profit function (gross profits less fixed

costs of scope). These functions are:



T(pi, SilPi-1, Si—1, Pit+1, Sit1) = (Pi — €)q(Di, Si|Pi-1, Si—1,Pit+1, Sit1); (3.5)
I(ps, si|pi—1, Si—1, Pi+1, Si+1) = T(Pi, 8i|Pi—1, Si—1, Pit+1, Sit1) — F(s4,7), (3.6)

and form the basis for the payoff functions in different stages of the games that follow.

3.2. Oligopoly: no threat of entry

The sequence of events in our first game is as follows: In stage 1, the n firms simultaneously choose
their levels of product scope. In stage 2, with complete information about the stage 1 choices, the
n firms simultaneously choose prices. Finally, based on the product offerings and prices, consumers
make their purchase decisions, and the firms receive their payoffs. We focus our attention on
symmetric subgame perfect equilibria of the game. The unique such equilibrium is specified in

Proposition 1. All proofs are in Appendix A.

Proposition 1. For an n-firm oligopoly with no threat of entry, the symmetric sub-game perfect

Nash equilibrium choice of price and scope, denoted p*(n), s* (n), are specified by:

—mti(s3(n).

Fi(si(n),7) = a2 (3.7)
pi(n) = c+w. (3.8)

The choice of the subscript (and subsequently, the superscript) A is because these functions are

later used to derive payoffs and welfare under entry accommodation, in contrast to entry deterrence.

Under the equilibrium of Proposition 1, each firm’s profits are:
. mt(s%(n)) .
HA(SA(n)’n) =—4 2 F(SA(n)’T)’ (39)

consumer surplus is:

CA(s%(n),n) = m Qn/ (v — at(sh(n)) — (c+ M)) dx (3.10)
0

(3.11)



and total surplus is:

TA(S*A(n),n) = nll(sh(n), )+ C(sH(n), 1) (3.12)

mHSAM) _ sty (), 7).

= m(v—c)— i

Proposition 2 examines the effects of changing the number of firms n on the equilibrium choices of

scope, price, profits and surplus:

Proposition 2. As the number of firms n increases

(a) The equilibrium level of scope s%(n) decreases:

ds?y(n) 2t (55 (n)
= <0, 3.13
dn n[dn?Fi1(s% (n), 7) + mti1(s¥(n))] (3.13)
(b) Equilibrium prices p%(n) decrease:
dp(n) _ t(sy(n) dsi(n)  tsh(n)

e - o 2 < 0 (3.14)

(¢) Equilibrium net profits T14(s* (n), n) decrease:

dil'(sh(n),n) _ 2mt(sh(n) [ mti(sh(n) 5 dsy (n)

dn I + < 2 - Fl(sA(n),T)> o= <0, (3.15)

(d) Consumer surplus C4(s*(n),n) increases:

ACA (s (n)ym) _ Bmi(sy(n)  Smita(s5() dsy(n)
dn 4n? 4n dn

>0 (3.16)
(e) Total surplus T*(s*(n),n) increases if:

t *
% > F(s%(n), ™) (3.17)
The increase in the number of firms n has a two-fold effect on equilibrium price. The second
term on the RHS of equation (3.14) is the direct effect of increasing the number of firms on price,
which is the only effect in the usual model with exogenous scope, and is always negative. On the

other hand, the first term on the RHS of equation (3.14) highlights the value to firms of being able



to strategically alter their product scope, which results in a positive price adjustment on account
of the equilibrium reduction in scope. Proposition 2(b) tells us that under the model’s convexity
assumptions about ¢(s), the negative effect always dominates the positive one, and therefore, having

a higher number of firms does lead to lower prices.

Similar results are established for firm profitability and consumer surplus in parts (c) and (d) of
the proposition. From (3.15) and (3.16), it is evident that the ability to strategically alter product
scope mitigates both the decrease in firm profitability as well as the increase in consumer surplus
that accompany an increase in the number of incumbent firms. In each of these expressions, the firms
term provides the change in the corresponding outcome (profit and consumer surplus respectively)
when scope is exogenous, while the second term, which is opposite in sign to the overall derivative,

represents the moderating effect of product scope.

The next proposition characterizes how progress in technology or an expansion in market size
affect equilibrium pricing and scope. Intuitively, since F5(s,7) < 0 and Fi2(s,7) < 0, the fixed cost
as well as the ‘marginal fixed cost’ curve Fi(s,T) are lower everywhere as 7 increases and hence

one would expect scope to increase.

Proposition 3. (a) Technology progress (an increase in T ) results in an increase in the equilibrium

level of product scope and a reduction in equilibrium price.

(b) An increase in market size m results in a higher equilibrium level of product scope and a

lower equilibrium price.

Notice from (3.8) that the symmetric equilibrium price is not directly dependent on either 7
or m. The price reductions that accompany an improvement in the state of technology or increase
in market size are entirely indirect, caused by the equilibrium increase in scope. An implication of
Proposition 3 is that enabling incumbent firms to expand sales of their products to a new market
(for instance, by including consumers in a different geographical location) results in an increase in
product scope and a reduction in price for all consumers, including those in the existing market.

It also simultaneously increases firm profits.
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3.3. Entry-deterring oligopoly

This section characterizes equilibrium entry deterring behavior by n incumbent oligopolists. The
sequence of events in this game is as follows: In stage 1, the incumbents choose symmetric levels of
product scope. In stage 2, a different set of n firms from an adjacent oligopolistic industry evaluate
potential entry into the first industry, and enter if it is profitable to do so at a level of scope
identical to that of the incumbents. In stage 3 all firms choose prices with complete knowledge of
the number of firms in the industry and product scope. Finally, based on the product offerings and

prices, consumers make their purchase decisions, and the firms receive their payoffs.

We restrict the incumbent firms to choosing symmetric levels of scope; this is analogous to this
choice of fixed cost of entry being an ‘industry-wide’ entry deterring decision (as in Spence, 1977).
Further, we constrain entrants to choosing the same value of product scope as the incumbents, if
they enter. If the n potential entrants do in fact enter, this results in a total of 2n symmetrically
located firms. Under the assumption that entry is not blockaded (that is, that the symmetric n-
firm equilibrium choices p%(n), s* (n) do not naturally deter entry), the symmetric entry-deterring

choices of product scope and price are specified in Proposition 4.

Proposition 4. The symmetric n-firm entry-deterring choices s3,(n) , p},(n) of product scope and

price are given by:

F(sh(n),7) % (3.18)
pp(n) = C+t(8%1ﬂ. (3.19)

HD(SB(’H),TL) — mt(j;%(n)) _ mt(j%;”)) — 3mt£;,;%(n))> (3'20)

consumer surplus is:
Smi(sp) (1))

CP(s%(n),n) =m(v—c) in , (3.21)
and total surplus is:
TP (5% (n),n) = m(v — ¢) — w (3.22)

11



Comparative statics under entry deterrence are qualitatively similar to those established in
Propositions 2. As the number of incumbent firms increases, there is a decrease in the level of
product scope s},(n) that is required to deter entry. This makes intuitive sense, because a larger
number of incumbents makes the industry more competitive, thereby reducing the potential gains
from entry. Also, while the higher number of firms in the industry drives the equilibrium prices
lower, this downward pressure on price is somewhat mitigated by the symmetric reduction in scope.

The sensitivity of entry deterring scope sj,(n) and the accompanying equilibrium price to
changes in technology 7, and to changes in market size m are also directionally similar to the
results of Proposition 3. Thus as 7 or m increases, the level of product scope required to deter
entry increases, and the symmetric equilibrium price decreases. An intuitive explanation is that as
technology progresses and 7 increases, fixed costs fall for all levels of scope (because Fa(s,7) < 0).
As a consequence, a higher level of scope is necessary in order to raise fixed costs to the level where
entry is deterred. Similarly, as the market size m increases, so does the revenue opportunity of en-
tering, warranting an increase in scope required to deter entry. The analytical details are available

on request.

3.4. Comparison of outcomes

We now compare the outcomes of Propositions 1 and 4. If entry is not blockaded by a symmetric
choice of s%(n), this implies that entrants will be able to make positive profits by offering this level

of scope upon entry, which in turn implies that:

%g(”)) — F(s%(n), ™) > 0. (3.23)
This implies that:
F(siy(n), ) < "HE4m) (3.24)

From (3.18), we know that at the entry deterring level of product scope s},(n), F(s},(n),7) =

mit(s%,(n))

12— Therefore since Fi(s,7) > 0, we can conclude from (3.24) that

12



sp(n) > su(n), (3.25)

and additionally from (3.25), (3.8) and (3.19) that:

pp(n) < pi(n). (3.26)

Intuitively, since entry is not blockaded at s%(n), a higher level of product scope is needed to de-
ter entry. The higher level of product scope increases fixed costs and at the same time decreases
the equilibrium prices, thus decreasing potential profits and making entry unattractive. The next
proposition compares profits and surplus under the two scenarios and contributes towards under-

standing the welfare effects of bilateral oligopolistic convergence discussed in section 4.

Proposition 5. In a market with n symmetrically located firms, if entry is not blockaded at the

oligopolistic equilibrium level of product scope, then

(a) Firm profits are higher under the oligopoly equilibrium as compared to those under entry
deterrence :

T (s% (n),n) > TP (s%(n), n). (3.27)

(b) Consumer surplus is lower under the oligopoly equilibrium, as compared to that under entry
deterrence:

CA(s%(n),n) < CP (s (n),n). (3.28)

(c) Total surplus is higher under the oligopoly equilibrium, as compared to that under entry deter-
rence:

TA(s%(n),n) > TP (s (n),n). (3.29)

While we have characterized and discussed the market outcomes in a scenario where entry is
successfully deterred, we have not in fact established whether it is optimal for the incumbents to
deter entry. It is possible that they may actually be better off just accommodating the entrants

rather than keeping them out. This issue is discussed in the following section.
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4. Bilateral entry in converging technology markets

This section uses the results of section 3 to analyze a model of converging technology markets.
As discussed in Section 1, this model is motivated by the observation that in many information
technology industries, the primary threat of entry is from existing firms in related industries (rather
than new start-up firms), and is often triggered by strategic responses to technological progress that
makes mobility across industry boundaries feasible. Besides, in technology markets, this movement

is often bilateral: firms in a pair of adjacent industries threaten to enter each others’ core markets.

4.1. Sequence and timing of events

There are two industries 1 and 2, each of which consists of n incumbent firms, and each of which
has the demand and cost structure described in section 2. Consumers in each market are assumed
to be distinct. Apart from the firms in these two industries, we assume that there are no other
potential entrants. The sequence of events is as follows: In the first stage, firms in each industry
choose the levels of scope for the products in their own markets. In the second stage, with complete
information about the first-stage actions, firms in each industry decide whether or not to enter the
other market. If entry occurs, then entrants are restricted to choosing the same product scope
as the incumbents. In stage three, active firms in each market choose prices in a non-cooperative
fashion. Finally, based on the prices and levels of scope in each market, consumers in each market

make their purchase decisions, and firms receive their payoffs.

4.2. Firm decisions and payoffs

Firms make two sets of decisions before choosing prices. In the first stage, firms choose product
scope in their own industry, towards either trying to deter entry (D) in the later stage, or towards
trying to accommodate entry (A) in the later stage. In the second stage, contingent on the decisions
made by the firms in the other market, and their own first stage decisions, each firm decides whether

to stay out (S) of the other industry, or whether to enter (E) the other industry .

In each industry, we assume that the decisions made by each firm are symmetric. That is,
each firm chooses the same level of product scope and price, and also chooses the same de-

ter/accommodate and enter/stay out decision. However, the symmetric decision can be different

14



Industry 1 actions Industry 2 actions Industry 1 payoff
DSDS | Deter, Stay out Deter, Stay out 17 (s%(n),n)
DSDE | Deter, Stay out Deter, Enter 0
DEDS | Deter, Enter Deter, Stay out 117 (s%,(n),n)
DEDE | Deter, Enter Deter, Enter 0
ASAS | Accommodate, Stay out | Accommodate, Stay out | ITI*'(s%(2n),n)
ASAE | Accommodate, Stay out | Accommodate, Enter I1"(s% (2n), 2n)
AEAS | Accommodate, Enter Accommodate, Stay out | II#(s% (2n), n) + I (s%(2n), 2n)
AFAE | Accommodate, Enter Accommodate, Enter 2114 (5% (2n), 2n)
DSAS | Deter, Stay out Accommodate, Stay out | I1”(s%(n),n)
DSAFE | Deter, Stay out Accommodate, Enter 0
DEAS | Deter, Enter Accommodate, Stay out | 1P (s%,(n),n) + 17 (s% (2n), 2n)
DEAE | Deter, Enter Accommodate, Enter 11" (s% (2n), 2n)
ASDS | Accommodate, Stay out | Deter, Stay out I1(s%(2n),n
ASDE | Accommodate, Stay out | Deter, Enter 1" (s% (2n), 2n)
AEDS | Accommodate, Enter Deter, Stay out 14 (s% (2n),n)
AEDE | Accommodate, Enter Deter, Enter 14 (s% (2n), 2n)

Table 4.1: Summary of payoffs under each combination of actions

across the two industries. As in section 3, we focus on cases for which entry is not blockaded in

either industry.

Under these assumptions, the choices of product scope and price are governed by the equilibria
described in Propositions 1 and 4. Therefore, the payoffs to each sequence of decisions can be
derived according to the equilibrium profit functions T4 and II”, adjusting the total number of

firms in each industry based on whether firms from the other industry have entered or not. This

leads to the following components of the final payoffs:

(a) If firms in an industry choose product scope to deter entry (D), and entry is successfully
deterred (S), each incumbent firm gets a payoff of II” (s%,(n),n) from that industry. This is the
payoff from the entry-deterring choice of product scope of the n-firm oligopoly (section 4). Note
that D is the choice made by the firm’s own industry, and S is a choice made by firms in the other
industry.

(b) If firms in an industry choose product scope to deter entry (D), but entry occurs (E),
then each incumbent and entrant firm gets a payoff of zero from that industry. This because

the equilibrium choice of scope s},(n) that deters entry is chosen to induce a payoff of zero for a

potential entrant who enters.

(c) If firms in an industry choose product scope to accommodate entry (A) and entry occurs

15



(E), then each incumbent and entrant firm gets a payoff of HA(S*A(QTL), 2n), which is the equilibrium

payoff from the 2n-firm oligopoly without an entry threat.

(d) If firms in an industry choose product scope to accommodate entry (A) but entry does not
occur (5), then each incumbent firm gets a payoff of II4(s*(2n),n) from their industry. This is
the equilibrium payoff from the n-firm oligopoly, when scope is s%(2n), or at the level chosen for

equilibrium with 2n firms3.

The payoffs from each combination of decisions, from the point of view of firms in one of the two
symmetric industries, are summarized in Table 1. A comprehensive explanation of each of these
payoffs is cumbersome, so we describe just a few illustrative cases. Under the first combination
of actions DSDS, there are n firms in industry 1, each of whom has chosen to deter entry, and
each of whom have chosen not to enter industry 2. As a consequence, each firm gets the n-firm
entry-deterring payoff II” (s%,(n), n) from industry 1, and gets no payoff from industry 2, for a total
payoff of IT” (s%,(n),n). Under the second combination of actions DSDE, on the other hand, while
firms in industry 1 have chosen to stay out of industry 2 and to deter entry in industry 1, the firms
in industry 2 have chosen to enter industry 1. Consequently, the firms in industry 1 get no payoff
from their own industry (since entry has occurred by n firms, all firms get zero payoff), and no

payoff from industry 2 (since they have chosen to stay out).

Similarly, under the combination DEAS, firms in industry 1 successfully deter entry from their
own industry (payoff of IT1”(s%,(n),n)), and enter industry 2, where they are accommodated (payoff
of TT4(s%(2n),2n)). Under the combination ASDE, the firms accommodate entry in their own
industry (payoff of IT4(s* (2n), 2n)), and stay out of industry 2 (payoff of zero), for a total payoff of
HA(S’Z(2n), 2n). Similar reasoning yields the payoffs for all the other combinations listed in Table

1.

30ne could argue that under a set of actions in which firms choose to accomodate in an industry, but entry does
not occur, the equilibrium payoff should be HA(S’;;(n), n) — simply the n-firm oligopoly payoff, rather than the higher
value IT* (5% (2n), n), since IT” (s% (2n), n) is not a Nash equilibrium payoff. However, this would be inconsistent with
the firm making their price and scope choices prior to knowing whether entry has occured. As it turns out, this does
not affect the results — this outcome is never on the subgame perfect equilibrium path, and under either assumption
(or any convex combination thereof), the actual equilibrium remains unchanged.
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(nDanD)

(0,mp) (0,0) 0,ma) (Maa-Moa) (M2A.T2A +7p)  (T2A.T2A) (M2a,TA +T2a) (2724,2704)

Figure 4.1: Game tree for the bilateral oligopolistic entry deterrence game, for one representative
firm from each industry.

4.3. Equilibrium

Having specified the payoffs to the firms under each set of actions, we now specify the subgame
perfect Nash equilibria of the bilateral entry game. Its extensive form and payoffs are shown in

Figure 4.1, for a representative player from each industry.
When choosing equilibria in the subgames, we assume that if a player is indifferent between E
and S (that is, the payoffs from entering and from staying out are equal), then the player chooses

S (to stay out)*.

Proposition 6. The bilateral entry game has a unique subgame perfect Nash equilibrium.
(a) If TI” (5% (n),n) > T4(s%(2n),2n), then the equilibrium strategies of all firms are DS
(deter, stay out), the equilibrium choice of scope is s},(n), the equilibrium prices are p},(n), and

the equilibrium payoffs to each firm are I1P(s%,(n), n).

(b) If IP(s%,(n),n) < TI4(s*%(2n),2n), then the equilibrium strategies of all firms are AE

4This simply defines equilibrium outcomes for knife’s edge cases. One could interpret this as implicitly assuming
a small cost of mobility across industries, which would imply that unless profits from entering are strictly higher, the
player does not enter. We do not explicitly specify such a cost, however, since it would then affect the optimal choice
of entry-deterring scope, thereby complicating the analysis substantially.
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Industry 2
Deter Accommodate
Industry 1 Deter 7 (s%3)(n),n), P (s3)(n),n) P (s% (n), n) + I4(s% (2n), 2n),
4 (s* (2n), 2n)
Accommodate | TI4(s%(2n),2n), 2114 (5% (2n), 2n), 214 (5% (2n), 2n)
P (s%(n),n) + T4 (s%(2n), 2n)

Table 4.2: Nash payoffs from second-stage subgames, for each of the first stage actions

(accommodate, enter), the equilibrium choice of scope is s* (2n), the equilibrium prices are p%(2n),

and the equilibrium payoffs to each firm are 2114(s% (2n),2n).

The derived payoff matrix for the first stage of the game after computing the Nash equilib-
rium outcomes of the second stage subgames is summarized in Table 4.2. When II”(s%(n),n)
< T4(s%(2n),2n), the equilibrium outcome of the game is Pareto-efficient, since the payoffs to
the firms are higher at the equilibrium outcome than in any other feasible outcome. On the other
hand, if TI4(s%(2n),2n) < TP(s%,(n),n) < 2IT4(s*(2n), 2n), the game becomes similar to a one-
shot prisoners dilemma. Both firms would be better off under the Accommodate-Accommodate
outcome, but since Deter is a dominant strategy for both players, they end up at the inefficient

entry-deterring outcome.

4.4. Technological progress and equilibrium changes

Proposition 6 shows that the relative magnitudes of the n-firm entry-deterring equilibrium profits
17 (s%(n),n) and the 2n-firm standard oligopoly profits TI4(s*(2n),2n) play the crucial role in
determining the equilibrium outcome of the bilateral entry game. As 7 increases, both these profit
functions tend to decrease. If one decreases more rapidly than the other, this can cause a shift from
one equilibrium outcome to another, resulting in a significant change in industry concentration and
investment in product scope, and a redistribution of surplus across firms and consumers. In this

section, we discuss two possible cases where this occurs.

The first case is illustrated in Figure 4.2(a), and represents a situation in which technological
progress has a higher impact on the entry-deterring profits. Both TT1”(s%,(n),n) and TI4(s% (2n), 2n)
are decreasing as 7 increases. While IT1P(s%(n),n) starts out higher (indicating the optimality of
entry deterrence at lower levels of technology 7), it decreases more rapidly than I14(s%(2n),2n).

At a critical point 7%, the profit functions cross, after which accommodating entry is optimal, and
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A Relative magnitude of the entry-deterring A Relative magnitude of the entry-deterring
and accommodating profits in each market and accommodating profits in each market
D *
11" (sp(n),n) I (5% (2n),2n)
A, * *
! IT%(s4(2n),2n) . HD(sD(n),n)
«—DS, DS~ AEAE—* «——AEAE—"+——DSDS—*
v T' T >
: * : * T
4 Corresponding equilibr il:‘m profits per firm A Corresponding equilibriunlh profits per firm
: 2014 (s(2n),2n) |
D, * : " i
O (sp(m)m) 2T (s4(2n),2n) . '
' T i
‘ — : e R 1°(sp(n)n)
. T S . T
(a) Higher impact on entrant profits (b) Higher impact on incumbent profits

Figure 4.2: Illustrates possible discontinuous shifts in total per-firm profits as the relative magnitude
of the entry-deterring and accomodating profits in each industry vary on account of technological
progress.

T4 (s*(2n),2n) > 117 (s%(n),n). While the progress in 7 and the changes in these two functions
are gradual, the changes in firm profits are substantial and discontinuous, since the equilibrium
outcome now shifts to AFAF, resulting in a doubling of firm profits and and the number of firms
in both industries. Moreover, there is an accompanying substantial drop in product scope, and a
corresponding drop in fixed costs. In addition, since the equilibrium shifts from an entry-deterring

one, to a standard 2n firm oligopoly, consumer surplus is likely to drop substantially.

The second case, illustrated in Figure 4.2(b), is where technological progress has a greater impact
on the 2n-firm oligopoly profits. Again, both 1P (s%,(n),n) and 14 (s%(2n), 2n) are decreasing as
T increases, but in this case, HA(S’A(%L), 2n) starts out higher, and decreases more rapidly, until
the curves cross at some point. Consequently, while entry would have been accommodated initially,
entry deterrence now becomes the equilibrium strategy for incumbents. Profits fall substantially, as
firms recede into their core industries, and raise their investments in product scope, so as to deter
entry. However, consumer surplus rises sharply, as the value of individual products increases, and

prices drop. While it is technologically feasible (and bilaterally profit improving) to accommodate
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entry in both markets, it is no longer strategically possible to do so.

The interesting aspect of both these cases is that while technological progress leads to ‘inno-
vation’ of sorts in both scenarios, the outcomes for firms and consumers are starkly different. In
the first case, when it is accompanied by an expansion by firms into new markets, and increase in
the number of firms in both industries, consumers paradoxically suffer on account of technological
progress. In the latter case, where there is focused and high individual investment by each firm
in their core markets, albeit at a level that is socially less efficient, consumers nevertheless benefit

substantially.

5. Discussion and conclusions

Technological progress often leads firms to compete in each others’ industries. Though this has been
highlighted recently by digital convergence and the sudden increase in products and services that
span traditionally distinct industry boundaries, it is not a new occurrence in technology markets.
For instance, Breshanan and Greenstein (1999) talk about the ‘competitive crash’ in the computer
industry in the early 1990’s, when, as described in their paper, seller rents were dramatically
reallocated across market segments, and firms that had previously supplied different segments now

competed for the same consumers.

This ‘competitive crash’ was not preceded by a technological shock, and for the most part,
neither has the current trend towards product convergence. Our model support these observations,
providing an explanation of how gradual progress in technology may lead to cycles in which there
are periods of gradual price and profit declines, followed by sudden changes as firms cross industry
boundaries. The sudden changes occur when the equilibrium shifts to one of entry accommodation.
Immediately following this shift, if entry is blockaded, there is a period of relative ‘calm’, after
which technology progresses to the point where it becomes necessary to deter entry in one’s markets
again. The change at this point, and following it, are still gradual, until technology progresses
to the point where accommodation becomes optimal again, thereby causing another substantial

industry realignment.

Independently, our analysis of oligopoly with endogenous scope and the threat of entry has

yielded a number of interesting results. We have shown that when firms in technology markets are
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able to respond to changes in industry concentration by adjusting both prices and product scope,
equilibrium reductions in scope mitigate the price and profit reductions that would accompany an
increase in the number of incumbent firms. This adjustment leads to a lower increase in consumer
surplus, than would have happened in an industry where product scope was exogenously specified.
Moreover, when firms use product scope to deter entry, their choices of scope are socially less efficient
(they are excessive) than their corresponding choices when they accommodate entry, although in
the former case, the consumers are better off. As technology progresses, the response by entry
deterring firms is to further increase product scope, thereby often reducing their own profits, and
continuing an inefficient transfer of surplus to consumers. This might form the basis for one
explanation of the observed long-term trends of hedonic price reductions in technology markets. In
this context, encouraging entry-deterring behavior under the argument that it benefits consumers
is unlikely to be good long-term policy. However, if a policy maker were to attempt to rectify this
inefficiency (by mandating a level of scope through imposition of dejure industry standards, for
instance, while still letting firms to compete on price), this is bound to reduce consumer surplus.
As a consequence, regulatory action that is socially optimal is unlikely to be politically viable, and

vice versa.

An increase in the total market size for the product results in an increase in product scope and
a reduction in prices for all consumers, including those in the existing market. This is consistent
with firms being able to spread their fixed costs of scope over a higher number of consumers —
consequently, they increase scope, and reduce prices in response. For instance, if wireless technology
developed for a national market were compatible with the standards in other national markets, this
would translate into gains not just for the manufacturers of wireless handsets and communications
equipment, but also for consumers in this market, since they would benefit from significantly better
products in their own market, at a lower price. Consequently, government regulatory policy that
encourages (or mandates) shared standards, even at the cost of mandating that firms invest more
in product design and software so as to cater to a multinational audience, will lead to substantial
consumer benefits, and will do so in a manner that improves firm profits. This may be instructive for
markets like the United States, which have chosen a purely industry-driven approach to standards

setting for cellular telephony.

A limitation of the model is its interpretation of a dynamic phenomenon based on comparative
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statics, which precludes dynamic strategic choices by firms which anticipate technological progress,
inherently assuming that they make myopic choices. Formalizing our technology cycles in a dynamic
model is a promising direction for future research. Other natural extensions include allowing
asymmetric industry concentration and market size in the two converging industries, so as to enable
the analysis of mobility decisions when one firm has more to gain from entry, and studying the
effects of heterogeneity in responses to technological progress, with possible information asymmetry

or technology spillovers.

6. References

1. Bresnahan, T. F. and Greenstein, S., 1999, Technological Competition and the Structure of

the Computer Industry, Journal of Industrial Economics, XLVII, 1-40.

2. Bresnahan, T. F. and Trajtenberg, M., 1995, General Purpose Technologies ‘Engines for

Growth’?, Journal of Econometrics, 65, 83-108.

3. Caves, R. E. and Porter, M. E.; 1977, From Entry Barriers to Mobility Barriers: Conjectural
Decisions and Contrived Deterrence to New Competition, Quarterly Journal of Economics,

91, 241-261.

4. Dewan, R., Freimer, M. and Seidmann, A., 2000, Organizing Distribution Channels for In-

formation Goods on the Internet, Management Science 46, 483-495.

5. Dixit, A. K., 1980, The Role of Investment in Entry Deterrence, Economic Journal, 90,

95-106.

6. Economides, N., 1989. Symmetric Equilibrium Existence and Optimality in Differentiated
Products Markets. Journal of Economic Theory 47, 178-194

7. Economides, N. and Salop, S., 1992. Competition and Integration Among Complements, and

Network Market Structure, Journal of Industrial Economics, XL, 105-123.

8. Fudenberg, D. and Tirole, J., 2000, Pricing a Network Good to Deter Entry, Journal of
Industrial Economics, XLVIII, 373-390.

22



10.

11.

12.

13.

14.

15.

16.

17.

18.

. Gilbert, R. and Vives, X., 1986, Entry Deterrence and the Free Rider Problem, Review of

Economic Studies, LIII, 71-83.

Greenstein, S., Khanna, T., 1997. What Does Industry Convergence Mean? in Competing in
the Age of Digital Convergence, D. B. Yoffie (Ed.), Harvard Business School Press, 201-226.

Hall,C. E. and Hall, R. E., 2000, Towards a More Precise Quantification of the Effects of

Microsoft’s Conduct, American Economic Review, 92, 188-191.

Hendel, I. and de Figueiredo, J. N., 1997, Product Differentiation and Endogenous Disutility,

International Journal of Industrial Organization, 16, 63-79.
Hotelling, H., 1929, Stability in Competition, The Economic Journal, 39, 41-57

Salop, S., 1979, Monopolistic Competition with Outside Goods, Bell Journal of Economics,
10, 141-156.

Schmalensee, 1999, Written testimony, Civil Action No. 98-1232 United States versus Mi-

crosoft. Awailable at hitp://www.microsoft.com/presspass/trial/schmal/schmal.asp

Spence, A. M., 1977, Entry, Capacity, Investment and Oligopolistic Pricing, Bell Journal of
Economics, 8, 534-547.

Stahl, K., 1989, Symposium: Location, Spatial Pricing, and Spatial Competition — Introduc-

tion, Regional Science and Urban Economics, 19, 1-4

von-Ungern Sternberg, T., 1988, Monopolistic Competition and General-Purpose Products,
Review of Economic Studies, LV, 231-246.

A. Appendix: Proofs

Proof of Proposition 1

Suppose each firm chooses product scope choice s in the first stage. Also assume that all firms

except firm ¢ choose price p in the second stage. If firm ¢ chooses price p;, then based on equation
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(3.6), its payoff will be:

4 Le(s
IL(pi,slp, 5,: ) = 2m(pi — ) (%) - F(s,7). (A1)

The payoff (A.1) is strictly concave in price p;, and hence the first order conditions are both
necessary and sufficient to yield a unique best response p; for firm 4, which is given by:

—t
n

! (s) + c> =0. (A.2)

m
Iy (p;, s|p, 5, p, 5) = n <p— 2p; +

We can now set pf = p in equation (A.2) to obtain the following unique symmetric price equilibrium
following a symmetric choice of scope by all firms, which is given by
t(s)

pf=c+ " (A.3)

Characterizing equilibrium symmetric product scope is less straightforward. We proceed as follows:
first, we find the marginal change in profit that a firm gets from a small unilateral deviation in
product scope from the symmetric level and set this profit to zero. This is done under the restriction
that firms’ choice of prices in the second stage will be adjusted appropriately to constitute a Nash

equilibrium under the new set of product scopes.

Assume that all firms choose a symmetric level of product scope s in the first stage, followed
by the symmetric Nash equilibrium price p (given by equation (A.3)) in the second. Now assume
that firm ¢ deviates from this symmetric level of first stage scope by a small amount. By choosing
a different level of product scope, firm ¢ alters the second stage price equilibrium. Therefore, firm

i’s marginal change in profits from a small variation in s; is:

d; _ dr
dSi - dSl’

— Fi(si,7), (A.4)

with Z’;ﬁ given by:

dm;  Om; . om; dp} om; dpiyq om; dp;_4
ds; - 0s; 8])2‘ ds; 6pi+1 ds; api—l ds; ’

(A.5)

where the subscripts ¢, ¢ — 1 and 7 + 1 represent the firm ¢ and its neighbors. The first term in
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equation (A.5) is the direct effect of increasing scope on gross profit, without taking the second
stage adjustments in price into consideration. The p* terms represent the firms’ best responses in
the second stage of the game, given the choices of product scope in stage 1. Since firms’ payoff
functions are strictly concave in their own prices in the second stage, the p* terms should satisfy
the n first order conditions for the second stage and ensure that equation (A.4) takes the second

stage equilibrium adjustments in price into consideration.

on; _

opr = 0 under subgame perfection. Further,

The second term in equation (A.5) is zero, since
the third and fourth terms are identical, owing to the symmetric choices by all firms except firm .

We will focus only on the ¢ + 1 terms.

Partially differentiating equation (3.5) with respect to s; after substituting ¢; from equation

(3.4), we have:

om; =-—m(p; —¢) ((pz 1—Di+ t (si-1 )tl + (piH pi t t (i1 )tl ) . (A.6)

Ds; (t(s1) + t(s7 )2 (t(s:) + t(81+1))2

Evaluating (A.6) at the symmetric levels of product scope s and price p according to (A.3) yields:

om;  miti(s)
95 = o (A.7)

Partially differentiating both sides of equation (3.5) with respect to p;;1 after substituting the value

of g; from equation (3.4), we have:

om; il — ¢ 1
opit1 (i =) (t(si) +t(8i+1)>. (A.8)

Evaluating (A.8) at the symmetric levels of product scope s and price p from (A.3) yields:

67@- m
= —. A9
Opiy1 2n (4.9

To evaluate 2 in equation (A.5), we need to examine how the solution to the system of equations
represented by the n first order conditions in the second stage responds to a change in s;. This is
hard to do for a generic n. We therefore follow Hendel and Figueiredo (1997) and use a first order

approximation given by:
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dpiyi _ 9P | Opiys dpj
A8 PR A8 S £ Al
dSZ‘ 881‘ + api dSZ‘ ( O)

Under this approximation, the second stage first order condition for firm 4, based on equation (3.5)

is:.

(A.11)

dm; | pr=m pi—1 —pf +Lt(sic1)  piv1 —pf + Lt(sit1)
dp; ! t(si) +t(si—1) t(s;) +t(sit1)

—m(p; —c) (t(8i> i) i) +t($i+1)) ’

which should be equal to zero. Differentiating (A.11) with respect to s;, rearranging and substitut-

ing the symmetric levels of product scope s and price p yields:

t1(s) 1 dpf  ti(s)
2nt(s)  t(s) ds;  2nt(s) ’ (A-12)
which implies that
dp?
—L =0. Al
5 0 (A.13)

Now, using i+ 1 in place of ¢ in equations (3.5) and (3.4), and writing down the first order condition

for the second stage of firm 7 + 1, we have:

dmit1 | phy=m Pi — Dip1 + %t(Si) Pit2 —Piy1 t %t(8¢+2)
dpi+1 o t(si+1) +t(si) t(si41) +t(si+2)

>k —c 1 1
—m(pit ) <t(3i+1> + t(s;) + t(sit1) + t(8i+2)> 7

which should also be equal to zero. Differentiating with respect to s;, rearranging and substi-

tuting the symmetric levels of product scope s and price p yields:

_ 3‘ =0, (A.14)

which implies that:

=25 (A.15)
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Substituting from (A.7),(A.9), (A.10), (A.13) and (A.15) into equation (A.5) yields:

dm; __miti(s) (m) <f1(8)> __mihi(s) (A.16)

ds; 2n2 2n 4dn 4n?

Applying the Nash condition by substituting (A.16) into (A.4) and equating it to zero, we obtain
the symmetric level of equilibrium product scope for the first stage of the game, which is given by

the following condition.

miy(s%(n
Fi(si(n), ) = -2, (A1)
n
which completes the proof.
Proof of Proposition 2
(a) Totally differentiating both sides of equation (A.17) with respect to n yields
ds* mity1(s%(n)) (ds’ mt(s%(n))
Fi1(s% —A) - AL (A — L Al
1(sa(n),7) < dn > 4n? dn * 2n3 (A.18)
which rearranges to
dsy(n) ot (s5y(n) | o)
dn 4n3Fi1(s*% (n), 7) + mnti1(s% (n))
: : ds3(n)
Since t1(s) < 0, Fi1(s,7) > 0, and t11(s) > 0, it follows that < 0.
n
(b) Totally differentiating both sides of equation (??) with respect to n yields
dp(n) _ ti(si(n)) dsy(n)  t(sh(n))
= - : A2
dn n dn n? (4.20)
Substituting equation (A.19) into (A.20) yields:
dpyn) ot (5 (n)))? () o)
dn 4nt Fi1(s%(n), 7) + mn?ty1(s%(n)) n? '
which rearranges to:
() _ 1 mf2(ts (530 = 1 (5305 0)] = 4P (s 0 DA0D)

dn n2 4n2F11(S*A(TL),7-) + mtll(‘s:kq(n))

Under the convexity assumptions imposed on t(s), we know that 2(¢1(s))? — t11(s)t(s) < 0. Since
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Fi1(s,7) > 0, this implies that the numerator of the RHS of equation (A.22) is strictly negative.

The result follows.

(c) Totally differentiating both sides of equation (3.9) with respect to n yields

A(s(n),n mt(s%(n mti (s (n s%(n
A ) 2milea) (D) gy, 7)) 22400 (423
Substituting for Fi(s*(n),7) from (A.17) and %ﬁn) from (A.19) yields:
Al (sh(n),n) _ 2mt(sh(n)  (mt(si(n))  mbi(sh(n) 2mti(s74(n))
dn N n3 +< n? + 4n? > <4n3F11(sZ(n),T) + mntll(sjl(n))> '

(A.24)

Rearranging terms and simplifying, we obtain:

dHA(sz(n),n) _ 2_m dm [2(151(5:"4(71)))2 — t(sZ(n))tll(s*A(n))] — 3m(t1(8j‘4(n)))2 — 16n2F11(sj‘4(n),T)t(s*A(n)
dn n3 4(4n2Fi1(s*(n), 7) + mtq11(s%(n))
(A.25)

In (A.25) since Fi; > 0 and ¢1; > 0, the denominator is positive, and since 2(t1(s%(n)))? —
t(s%(n))ti1(s%(n)) <0, based on our convexity conditions for ¢(s), the numerator is negative. The

result follows.

(d) Totally differentiating both sides of equation (3.11) with respect to n yields:

dC(s%(n),n)  B5mt(s%(n))  5mti(s%(n)) ds%(n)
c?n N 47;3 N 14nA gn ' (A.26)

ds* (n)

Substituting from (A.19) for —4-— and simplifying yields:

dCA(s5(n),n) _ 5m | 4n2Fii(sh(n), )t(s}(n) + m (t(sh ()t (s4(n)) — 2(t1(s5(n)))?)
dn 4n? An2Fy1(s*(n), 7) + mt11(s% (n)
(A.27)

In (A.27) the denominator is positive since Fj; > 0 and ¢1; > 0, and the numerator is also positive
since t(s%(n))t11(s%(n)) — 2(t1(s*(n)))? > 0. The result follows.

(e) Totally differentiating both sides of equation (3.12) with respect to n yields:
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+nF1(s;(n),T)> dsz‘é") . (A.28)

AT (55, (), ) (PO ) (st

dn - 4n?

Substituting for Fi(s*(n),7) from (A.17), we have:

dT4 (5% (n), ) (mt(smn)) P, T)) ) (musz(n)) ) nmh(sz(n») A40) (4 99)

dn 4n? A 4dn 4n? dn

The second term equals zero and therefore (A.29) simplifies to

AT (st (n)ym) _ (i)
dn 4n?

- F(sZ(n)n’)) . (A.30)

The result follows.

Proof of Proposition 3

(a) Totally differentiating both sides of equation (A.17) with respect to 7 yields:

. ds3 (n) ) mti1(s(n)) (dsi(n)
Fulsin).7) (ZA) 4 Fia(si(n),r) = ) (2A0D)
which rearranges to:
ds* —Fia(s?
T Fii(s%(n),7) + —54—>
: . dsy(n)
Since Fia(s,7) < 0, Fii1(s,7) > 0, and t11(s) > 0, it follows that 0 > 0. Next, totally
differentiating both sides of equation (?7?) with respect to 7 yields:
dpjy(n) _ ti(sh(n)) dsi(n)
_ A.33
dr n dr ' ( )
ds* dp?*
and since t1(s) < 0 and 33_(”) > 0, it follows that pg—(n) < 0.
T T

(b) Totally differentiating both sides of equation (A.17) with respect to m yields:

Fii(s%(n),7) (dsZ(n)) _ _tl(sjzl(n)) _ mtll(S*A(n)) <d$f4(n)) ’ (A.34)

dm 4n? 4n? dm
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which yields:

dm An2Fiq(s%(n), 7) + mtii(s%(n))
. . ds* (n) . L.
Since t1(s) < 0, Fi1(s,7) > 0, and ¢11(s) > 0, it follows that —a > 0. Totally differentiating
m
both sides of equation (?7?) with respect to m yields:
dpyn) _ (s () dsiy(n) (A.36)

Since t1(s) < 0, we have %ﬂ(%n) < 0.

Proof of Proposition 4

Assume that each of the incumbents chooses a level of product scope sp in stage 1 of the game.
Given the restriction on the entrants’ scope, they will also have to choose a level of product scope
equal to sp, should they decide to enter the market in stage 2. With symmetric levels of product
scope and 2n firms in the market, we can use (A.3) to calculate the equilibrium prices in stage 3

as:

t(sp)
on

pp =c+ (A.37)

Given symmetric choices of product scope and price (sp,pp), each firm receives a demand of m/2n.

Thus the net profit for each entrant® is:

mt(sp)
4n?

g(pp,sp) = — F(sp,T). (A.38)

The entry deterring level of product scope follows from equating the entrants profits to zero in
equation (A.38). This yields:

F(sh(n), 7) = % (A.39)

Substituting the entry deterring level of scope in (A.3) yields the following equilibrium price:

P (n) = ¢+ 2°D). (A.40)

SIf entry occurs, this will be the incumbents’ profit as well.
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Proof of Proposition 5
(a) In each of the two cases, given the appropriate level of scope s, the expression for net profits
is

II(s,n) = — F(s,7). (A.41)

Since t1(s) < 0 and Fi(s,7) > 0, the expression above is strictly decreasing in s. Consequently,
using s%(n) < s},(n), the result follows.

(b) In each case, given the appropriate level of scope s, the expression for consumer surplus is

C(s,n) =m(v—c)— 572—7;58) (A.42)

Since t1(s) < 0, the expression above is strictly increasing in s. Since s},(n) > s%(n), the result
follows.
(c) At a given level of scope s, the expression for total surplus is C(s,n) 4+ nll(s,n). Thus,

mt(s)

T(s,n)=m(v—c)— ™

—nF(s,1). (A.43)

Differentiating both sides of (A.43) with respect to s yields:

~mty(s)

Ti(s,n) = T nkFy(s,7) (A.44)
Tii(s,n) = %;1(8) —nFii(s, 7). (A.45)

Since t11(s) > 0 and Fii(s,7) > 0 for all s, this establishes that T'(s,n) is strictly concave in s.

Further, from (A.17) we know that Fy(s%(n),7) = —M, and therefore

4n?
Ti(s%(n),n) = 0. (A.46)
Since s%(n) < s¥,(n), strict concavity of T'(s,n) implies that T'(s% (n),n) > T'(s},(n),n).

Proof of Proposition 6

First, consider the payoff matrix for the second-stage subgame that follows a choice of Deter by

firms in both industries (the DD subgame):
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Industry 2

Stay out (5)

Enter (E)

Industry 1

Stay out (S)

11" (s} (n),n), I”(s},(n), n)

Enter (E)

117(s},(n),n), 0

Subgame DD

Clearly, S is a weakly dominant strategy for both players. Since we choose S over E when they

yield the same payoffs, the Nash equilibrium of this subgame is S'S.

Next, consider the payoff matrix for the DA subgame:

Industry 2

Stay out (5)

Enter (E)

Industry 1

Stay out (5)

117 (s} (n),n), (5% (2n),n)

0, HA(SZ(2TL), n)

Enter (E)

11°(s}(n), n) + I (s’ (2n), 2n),

I14(s%(2n), 2n)

HA(SZ(QH), 2n), HA(SZ(QR), 2n)

Subgame DA

S is a weakly dominant strategy for firms in industry 2, and E is a dominant strategy for firms

in industry 1. Consequently, the Nash equilibrium is E'S.

Next, consider the payoff matrix for the AD subgame:

Industry 2

Stay out (S)

Enter (E)

Industry 1

Stay out (S)

4 (s (2n),n), TP (s7(n), n)

I14(s% (2n), 2n),
1° (s (n),n) + I (s%(2n), 2n)

Enter (E)

HA(SZ(ZI”L), n), 0

HA(S*A(2n), 2n), HA(SZ(QTL), 2n)

This is simply the DA payoff matrix transposed, with payoffs exchanged.

Subgame AD

In this case, S is a

weakly dominant strategy for firms in industry 1, and E is a dominant strategy for firms in industry

2, which leads to the Nash equilibrium SFE.

Finally, the payoff matrix for the AA subgame is:

32




Industry 2

Stay out (S) Enter (E)

Industry 1 | Stay out (S) T4 (s%(2n),n), T4 (s%(2n),n) T4 (s*(2n), 2n),

T4 (s%(2n),n) + T4 (s%(2n), 2n)

Enter (E) | TI4(s%(2n),n) + II4(s%(2n),2n), | 2IT4(s%(2n), 2n), 2I1(s* (2n), 2n)

T4 (s* (2n), 2n)

Subgame AA

Clearly, F is a dominant strategy for both players, leading to the Nash equilibrium FFE.

Therefore, under subgame perfection, the payoffs as seen by the players when making their

stage 1 decisions are as follows:

Industry 2
Deter Accommodate
Industry 1 Deter P (s%,(n),n), 0P (s%,(n),n) TP (5% (n),n) + T4 (s%(2n), 2n),
14 (s* (2n), 2n)
Accommodate | TI4(s%(2n),2n), 21014 (s% (2n), 2n), 2114 (5% (2n), 2n)
P (s%(n), n) + T4 (s%(2n), 2n)

First stage payoffs, given Nash outcomes in the second stage

If 1P (s%,(n), n) > T4 (s%(2n), 2n), then Deter (D) is a dominant strategy for both players. On
the other hand, if 1P (s%,(n),n) < II4(s%(2n), 2n), then Accommodate (A) is a dominant strategy
for both players. If TI”(s%,(n),n) = IT4(s*(2n),2n), then any combination of actions is a Nash
equilibrium. Consistent with our earlier assumption of firms choosing to stay out rather than
enter, we choose DD as the outcome in this case (it is a knife’s edge case and has no bearing on

the subsequent discussion). The result follows.

33



