Competing in Markets with Digital Convergence: Extended Appendix

Ravi Mantena and Arun Sundararajan

This is a companion document to “Competing in Markets with Digital Convergence” (henceforth
referred to as the main paper). Section A of this document contains detailed proofs of all the results in
the main paper. Section B presents the details of a benchmark monopoly model, and discusses some
welfare implications based on contrasting these results with the converging duopoly results presented

in the main paper.

A. Proofs of the main paper’s results

A.1l. Proof of Lemma 1

Towards future generalization, the result is proved for a more general set of cases than stated in
the paper. Let the effectiveness with which a product provides a functionality located at a distance
z € [0,3] from its core functionality is given by u(z) = max{l — tg(z),0}, where g(z) is strictly
increasing. In the main paper,

g(x) == (A.1)

The utility obtained by a consumer located at y € [%, 1] is then given by:

y+3
Ul t) = [ (1= tif@)ds (A.2)
y;g
where
g(3—z), 0<a<i;
glx) = 4§ glz—3), $<z<y; (A.3)
g(% - x)? 1 Sz < %

Based on (A.2) and (A.3), the value function U(y) in the interval y € [$, 1] has a different functional

form in each of three successive ranges of y, which is:

where G(z) = [ g(z)dz is defined as the cumulative loss function. The intuition behind these expres-



sions is illustrated in Figure A.1.

(a) It is easily verified that
UL 1) = U0 = — 1G(0), (A5

and that
UA(5E,1) = U3t =7 —t[G(3) — G($ — )], (A.6)

which establishes that U (y, t) is continuous in its arguments. Also, differentiating both sides of equation

(A.4) with respect to y yields:

Ul t) = —t|gly— 1;T)—9(1;T —y)} :
Uyt) = —t|gly— 1;) —gly - 1_2“”)} , (A7)
Uy t) = —t|g(1—ly— 1;7’]) —gly - 1—2“6)} :
and with respect to ¢ yields:
Up(yt) = — _G(lgT —y) +Gly - 1;74)} :
Uint) = - |G- 150 - G- 50|, (A9
U0) = - |26(3) - Glu— 35 - G- - 15

Since both G(z) and g(z) > 0,and noting from equation (A.4) the ranges of y in which each function

is active, this establishes that U is decreasing in y and in ¢

(b) Using equation (A.7), it is easily verified that

UL (155, 1) = UF (45, 1) = ~tg(r), (A.9)

and that
UP(35,1) = UP (355, 1) = —tlg(3) — 9(3 — 7). (A-10)

This establishes that Ui (y,t) is continuous. Inspection of (A.7) establishes that it is piece-wise differ-

entiable with respect to both its arguments.
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Figure A.1: Illustrates the derivation of the consumer value function U(y,t). In the three successive
ranges of y, the product covers segments of consumer functionality requirements in different ways

(each of which is illustrated above), thus resulting in three different integral expressions for the actual
value derived from the product.



(c) Differentiating both sides of equation (A.8) with respect to y yields:

Uly(y,t) = —_g(y—lgT)— (1J2rr—y)],
Uby(y,t) = —_g(y—lgr)—g(y—lzr)], (A.11)
Uh(y,t) = —-9(1—[y—1;r])—9(y—1;7n)}

Since g(z) > 0, and noting from equation (A.4) the ranges of y in which each of the U functions is

active, this establishes that Us(y,t) is decreasing in y. This completes the proof.

A.2. Statement and proof of Lemma 4

The following intermediate result is used in some subsequent proofs, and in the analysis of monopoly

in Section B. Recall the definition of the monopoly inverse demand function

PY(g,6) = Ulg+5.0) (A12)
and define
RM(q,t) = ng[P"(q,t) — . (A.13)

Lemma 4. (a) RM(q,t) is strictly concave in q for 0 < q < 1;’, and therefore has no more than one

interior maximum in this interval.

(b) In the interval 1%’ <¢g< %, RM(q,t) is always maximized at one of its two end-points. That

is, either RM(lgT,t) > RM(q,t) for all ¢ € [1;, %], or RM(%,t) > RM(q,t) for all ¢ € [1—;, %]

Proof. RM(q,t) can be computed in each of it’s intervals, and reduces to the following functional

form:
2 r
nglr —c| —ntqlg® + ], 0<qg< g
1—r. (A.14)

RM(q,t) = nglr — d —ntrg®, for 5 <gq<

—r2 _r
nglr — ¢ —ntglg[l — ¢ - 151, L2 <g<l.

(a) Differentiating both sides of equation (A.12) with respect to ¢ yields:

PM(q,t) =Ui(g+ 3,1) (A.15)



which in conjunction with equation (A.7) establishes that if r > 0:
PM(q,t) <0 for0<q< = (A.16)
Furthermore, differentiating both sides of equation (A.15) with respect to g yields:
P (g, t) = Uni(q + 3,1). (A.17)

Differentiating (A.7) twice with respect to y verifies that Uy1(y,t) < 0 for all % <y< 22;7", which

implies that:

PN (g,t) <0 for 0 < g < 2. (A.18)

Now, differentiating both sides of equation (A.13) twice with respect to ¢ yields
Ri1(q,t) = 2nP{" (q,t) +ngPY (q,1) (A.19)

Equations (A.16), (A.18) and (A.19) establish that

R{{(g,t) <0 for 0 < ¢ <15~ (A.20)
(b) Recall that for 157 <y < i

M [1 -7

R™(q,t) = nlqr — ] — talq[l — ¢] = ——], (A.21)
and therefore:

_ _ 12
RM(l=r g — n[[r 0]2[1 T tr[14 7] I (A.22)
RU(Gy = s TR (A.23)

By direct comparison of the expressions on the RHS on equations (A.22) and (A.23), it can be estab-
lished that:

=
X
—
—
o |
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RM(L 1) for t > 1y, (A.24)

RM(L 1) > RM(4E t)fort <ty (A.25)



=B (A.26)

Next, for ¢ > 157', direct comparison of the expressions on the RHS on equations (A.21) and (A.22)

establishes that

RM (L5 1) > RM(q,t) for t > to, (A.27)
where
2[r — |

lo = . A28
2Tl =+ gl +q[1—2q] ( )

Comparing the expressions on the RHS of (A.26) and (A.28) establishes that:

r

ty <t for ¢ > 7 (A.29)

Equations (A.24), (A.27) and (A.29) establish that

RM(55,t) > RM(5,1) = RM(455,t) > R (q,t) for all ¢ > 13-,

Similarly, direct comparison of the expressions on the RHS on equations (A.21) and (A.23) establishes

that
RM(L,t) > RM(q,t) for t > ts, (A.30)
where
4[r — (]
t3 = . A.31
ST 2 =]+ 2¢[1 - 2] (A.31)
Comparing the expressions on the RHS of (A.26) and (A.31) establishes that:
1—7r
tz3 >ty for ¢ > (A.32)

Equations (A.25), (A.30) and (A.32) establish that
RY(3,1) = RY (335, 1) = RY(3,t) > RY (q,) for all ¢ > 157,

which completes the proof. m



A.3. Proof of Lemma 2

Recall the definitions of the competitive inverse demand function:

1

Define

RY(qi,ti, tj, p;) = ngi[PC (qi, tis tj, pj) — ¢]. (A.34)

The function 7(q;, i, 5, p;j), i = A, B, therefore takes either the form R (g;, ;) or the form R (qi,ts, tj,Dj)-
The former is simply the monopoly profit function, which has already been shown in Lemma 4 to have

at most one interior maximum, and from (A.33) and (A.34) the latter can be expanded to:
R (qi ti, t,pj) = RM (gi, i) — nlai[U(1 = gi, t5) — py]]- (A.35)

Since —U;(1 — g;,t;) > 0, the function [¢;[U(1 — ¢;,t;) — p;)] is increasing and convex in ¢; for all g;.
Therefore, the function Rc(qi,ti,tj,pj) also has no more than one interior maximum, and it is also

strictly concave for ¢; < %

Now, suppose wi(qi,ti,tj,pj) has an interior maximum ¢* in its monopoly region, implying that

RM(q*,t;) = 0. Based on (A.35),
RY (qistir t ) = R (i ti) = n[U(1 = g, tj) — pj] + nqUr(1 = gi, t;). (A.36)

Since R (g;,t;) < 0 for ¢; > ¢*, and Uy(1 — ¢;,t;) < O for all ¢;, and by definition, U(1 — ¢;,t;) — p;
> 0 for any ¢; in the competitive region of the duopolist’s profit function, the RHS of (A.36) is strictly
negative, and hence if there is an interior maximum in the monopoly region, there cannot be one in
the competitive region.

Similarly, if 7*(g;, i, tj, p;) has an interior maximum ¢* in its competitive region, based on (A.36)
this means that

T (" t) = n[U(L = ¢, t;) —pj] = ng"Ur(1 = ¢, t;) > 0, (A.37)

which means that 7}/ (g;,t;) > 0 for any ¢; < ¢*, which in turn implies that 7°(g;, #;,t;, p;) cannot have

an interior maximum in its monopoly region. The result follows.



A.4. Proof of Proposition 1

For any (t4,tp), define:

U l,ti — 1
QM) = Ch 1) - x, if such an x exists in [0, <] (A.38)
—Ui(z + §,t1j) 2

1
= 3 otherwise.

Uz + %,ti) —c
—[U1(z + 3,t:) + U1 (1 — 2, ;)]

. 1
QY(ti,t)) = x: =z, if such an z exists in [0, 5] (A.39)

= otherwise.

N =

QM (t;) is the interior maximum in ¢ (if it exists) of the monopoly portion of the profit function
(g, ti tj, pj), and is % otherwise. Analogously, Q° (t;, t;) is interior local maximum of the competitive
portion of the function 7(q,;,t;,p;) with p; = U(1 — Q€ (t;,t;), ;).

The proof has the following six parts.

(I). A local-monopoly equilibrium is feasible only if Q" (t4) + QM (tp) < 3.

Proof. Under a local-monopoly equilibrium configuration, we know that g4+ ¢ < % In a feasible
Nash equilibrium, ¢ has to be a local maximizer of 7 (q;, ti, tj,p;). Since ¢’ is in the monopoly region
of (i, ti, tj, p;), and we know that the unique local maximizer in this region, if it exists, is @ (¢;),the
only possible value of ¢} is QM (t;). Consequently, the local-monopoly equilibrium configuration is
feasible only if QM (t4) + QM (tp) < 5. m

(II) An adjacent-markets equilibrium is feasible only if Q(t4) + QM (t5) > 3, and
QY (ta,t) +Q(tn,ta) < 3

Proof. Under an adjacent-markets equilibrium configuration, we know that ¢+ ¢ = %, and
that ¢ is at the kink of the duopoly inverse demand curve of firm 7. Given firm j’s strategy, there
should be no incentive for firm ¢ to deviate from its choice of ¢;. Locally, that means that in any
adjacent-markets equilibrium, either a small decrease or a small increase should not increase firm ¢’s

payoff, or that

RY (g ,ti) > 0, (A.40)
and that
RY (g} ti,tj,p}) <0, (A.A41)



Since RM(q,t;) < 0 for ¢ > QM(t;), it follows from (A.40) that
and therefore
| .1
QM(tA) + QM(tB) Zq)+aqp = 5 (A.43)

Define ¢ (p;) as the value of q at the kink in the inverse demand function, for any opponent price p;.

From this definition of ¢’ (p;), we know that
Ul —q"(pj),tj) = pj- (A.44)

Differentiating both sides of (A.44) with respect to p; and rearranging yields:

0 = 5o (A.45)

Substituting in the expression for R (g;,t;) into (A.36) yields:
R{ (i ti,tj,p5) = (Ui, ti) —c— U1 — a5, ;) + ps] + a[Ur(ai, ti) + U1 (1 — gi, 1)) (A.46)

Also define s (p;) as the value of Rlc(qi,ti,tj,pj), evaluated at the kink ¢ (p;) , as a function of
opponent price p;. (A.44) and (A.46) yield:

s (pj) = [U(a" (p), ti) — e + ¢" )10 (¢" (p)), ts) + Ur(1 = ¢" (p;), 1)]. (A.47)
Differentiating both sides of (A.47) with respect to p; yields:

st () = ar ()[2U1(¢" (), 1) + U1(1 = " (9)), ;)] (A.48)

+" () [U11(¢" (p)), ti) — Ur1(1 — ¢" (), ).

From (A.45), we know that ¢f(p;) > 0. Since Ui(q,t) < 0 for all ¢, and based on Lemma 1,

Ur1(¢% (pj), t;) <0, and Up1(1 — g% (p)),t;) > 0 so long as ¢% (p;) < 15, it follows that
s (pj) < 0. (A.49)

In other words, the slope of the competitive profit function, evaluated at the kink, is decreasing in p;.



Now, by the definition of ¢% and of Q¢ (t;, ti),
g" U1 = Q%(ti, 1)), ;)] = Q° (ti, 1)), (A.50)

and

RY(Q“(ti 1)), ti,t;, U(L = Q“ (ti, 1)), 1;)) = 0, (A.51)
which in conjunction with (A.41) and the fact that si(p;) < 0, establishes that
U(l— Q% (ti,t;),t;) < p} (A.52)
(A.45), (A.50) and (A.52) together imply that
Q (k1)) < 4" (p))- (A.53)
Since the candidate equilibrium is at the kink, it follows that ¢f = ¢/ (p’;) Therefore,
Q°(ta,tn) + Q (tn, ta) < ¢ + df, (A.54)

and the result follows. m
(III) A competitive equilibrium is feasible only if QC(t4,t5) + Q% (tp,ta) > %
Proof. If the candidate equilibrium is in the competitive region, it follows that the corresponding

q values occur after the kink, or that

a > q"(p)). (A.55)

Also, since ¢ is part of a candidate equilibrium in this region, it must be the case that it occurs at a

local maximum of Rc(qi, i, tj, p;f), or that:
R?(Q;v ti, tjap;) = Oa (A56)
which in conjunction with (A.55) implies that

R (4% (9}), tirtj,p) > 0. (A.57)

10



Based on (A.49) and the definition of Q“(¢;,t;), (A.57) implies that

From (A.58), it follows that

" () > Q°(ti ;).

QY (ta,tp) +Q (tn,ta) > ¢ + -

Since ¢} + q; = %, the result follows. m

(A.58)

(A.59)

(IV) Functional forms of Q(t) and QY(t4,t3) in different ranges, and associated

bounds.

The algebraic details of this exercise are extensive, and are not presented. The derivation of the

values of QM (t) are based on (A.38), and are summarized in Table A.1.

Range of ¢ Value of QM (t) Bounds on QM (t;)
2> ¢; > It OM(t;) = \/4[7° 102}t1r2t \/W < QM(t) <5
A QY (t:) = 5 L<Mt) <
A 2t e | QY =3 T g | <@V <)
bi < % QM (ti) =5 _

Table A.1: Functional form of Q" (t) for different ranges of t.

The derivation of the values of QY (t4,t5) are based on (A.39), and are summarized in Table A.2.

Range of ¢; in terms of ¢;

Value of QY(t;,t;)

Bounds on Q%(t;,t;)

b2 2

it — 1] > t; > 2=

2 [ r [71:Cr]

—ti] >t;

A =2t + /A[A — t]]

Crs. 1\ JAr=cd—r3t
Q" (ti:t)) =\ ]

Q(tists) = mpriry

QY (titj) < %
L <QY%titj) <L

2t;+t;

QY(ti, 1) =

—y/2ti+t,12—A[3t;

+2t]

2[3ti+2tj]

)< 2t +t;
2[3t;+2t;]

< [A— 2t; + \/A[A—ti]]

Qo(tiatj) = %

Note: A =4[r —c] + t;[1 —7]?

Table A.2: Functional form of Q“(t,,tp) for different ranges of t,4,tp.

(V) Specifying the range of (t4,tp) values under which each of the three equilibrium

configurations exists.

Note the following about the bounds on Q™ (¢;) and Q®(t;,;) in Tables A.1 and A.2. Since r < &

11

29




r 1 1—r 1
- < = > —, .
2[2]_2 and 2] 5 ]_2 (A.60)
From part (I) of this proof, a local monopoly equilibrium is feasible only if
1
QV(ta) + QY (ty) < 3. (A61)

From column 3 in Table A.1 and (A.60), it is clear that condition (A.61) is always satisfied for

2 > ta,tp > 55° and never satisfied for [ } >ta,tp . In the region 555 > tg,tp > [ ], condition
(A.61) is satisfied iff
— — 1 t t
roeroce loptatis 1 (A.62)
2rt 2rtp 2 tatp r—c

If2>t > 7[’“1 "] >t Z%forzg—le from column 2 in Table A.1, we need the

following for (A.61) to be satisfied:

(A.63)

4[T—C]—T2ti+l 4=3[1—-r* r—c 1
12t; 3 3, 2

which simplifies to:

Ar — ] — 1%t 4-31—-7r2 r—c 1
— — —. A.64
\/ 12t; 36 3, 6 (A.64)

The conditions (A.62) and (A.64) are each tighter than the other in their respective regions of the
(ta,tp) parameter space and hence a conjunction of the two conditions defines the AM curve that

partitions the local monopoly region and the adjacent-markets region.

Now consider the condition:

N -

QY (ta,ts) + Q% (tp,ta) < (A.65)

From column 3 of Table A.2 and (A.60), it is clear that condition (A.65) will never be satisfied if

2t +t; < [{1 C]} i,j = A, B. From columns 1 and 2, if 2[*5° —#;] > t; > 2[T[ m —ti], 1,7 = A, B, then
condition (A.65) will only be satisfied if
r—c r—c 1 3[ta +tg] r
+ <= o < A.66
r[2ta +tg] T2t +ta] T 2 ' [2t4 +tg][ta +2tp] ~ 2[r — (] ( )

12



Once again from columns 1 and 2 of Table A.2, if for i, j = A, B, t; > 2[*5° —t;] and 2[=5 —t;] >

e
t; > [A—2t; + \/A[A — t;]] where A = 4[r — c] +t;[1 — r]?, then condition (A.65) will only be satisfied

Alr —d =72t 265+t — /2t + ]2 — [Alr — o + t5[1 — ]?][3¢t; + 2] -

A
430, 1 21 2131, + 21 (A-67)

N

It can be verified that each of conditions (A.66) and (A.67) have to be binding in their respective
regions of the parameter space for condition (A.65) to be satisfied. Therefore a simple conjunction
of conditions (A.66) and (A.67) yields the C'A curve that separates the adjacent-markets equilibrium
region from the competitive equilibrium region. It is straightforward to verify that every point (t4,tp)
which satisfies ¢; € [0,2], i = A, B, and satisfies (A.62) and (A.64), also satisfies condition (A.66) and
(A.67). Thus, the region between the AM and the C'A curves corresponds to the adjacent-markets
equilibrium region.

Based on this partition of the (t4,tp5) space, define the following functions:

A[r — ] — r2t; 4— 31—r r—c
anm(tiy t;) = - ; A.68
f ]\[(z j) 12t1 \/ Stj ( )

4lr — ] — r2t; N 265+t — \/[2t; + t:]2 — [A[r — ] + t;[1 — r]?][3t; + 2tilA 60)
4[3t; + 2t;] 2[3t; + 2t;] v

fea(tity) =

A precise statement of Proposition 1 can now be provided:

Proposition 1. For each pair of feasible values of product scope (1/ta,1/tp) for the competing

products, there is a unique feasible price equilibrium.

(a) The outcome is a local-monopoly equilibrium only if the following conditions are satisfied:

ta+1iB < r

, (A.70)
tatp r—=c
1
fam(tastp) < & and (A.71)
1
fam(ts,ta) < = (A.72)

(b) The outcome is an adjacent-markets equilibrium only if at least one of (A.70-A.72) is not

13



satisfied, and the following conditions are satisfied:

3[tA+tB] < r
[2t4 +tp][ta + 2t5] 2
1
foalta,tp) < 5
1
foa(ts, ta) < 7

, (A.73)

(A.74)

(A.75)

(c) The outcome is a competitive equilibrium only if at least one of (A.73-A.75) is not satisfied.

Figure 4.2 is reproduced as Figure A.2, with the appropriate portions of the AM and C'A curves

labeled.

(VI) Equilibrium demand.

Denote the equilibrium choice of ¢ by firm ¢ when firm ’s product scope is (1/t;) and firm j’s

product scope is (1/t;) as ¢} (t;,t;). These values are summarized in Table A.3.

Equilibrium configuration: Local-monopoly

Range of values of i;

Equilibrium ¢ (t;,t;)

[r—d

2>t >

* 4[r—c]—r2t;
g (ti 1) = \/%

[r— F] > t [r—]

q;k(ti,t') _ nlr—c|

r2 = r[l—r} oL
[r—c] 12[r—c] 4-3 1 ki [r—c
Tie] =62 TR qf (i, t) — \/ [ P _ Z_]

Equilibrium configuration: Adjacent-markets

Relative values of Q" (t;), QM (t;),Q% (t;,t;) and QC(¢;,t;)

Range of equilibrium ¢} (t;,t;)

—QC(t,ti) > QM(t:) > 5 — QM (t;) > QY(t;,

31— QM) < qr(tity) < QM (k)

L QM(t;) < qf(ti,t)) < % — QY (t;,ti)

3 — QYL t:) > QM (1 “ti,t5) > % — QM (t;

QC (ti ) < q; (ti ;) < QM (k)

) tj)
QM(t) 2 5 — QL) = 5 — QY(ty) = Q“(ti )
) )
) )

Q]\f (t7

Qi ty) < qf(tirt;) < 5

Note: at any adjacent-markets equilibrium, ¢%(t4,t5) and

g5 (tp,ta) sum to 5 (see Figure 4.2)

Equilibrium configuration: Competitive

Range of values of t;

Equilibrium ¢ (;,t;)

All feasible competitive equilibrium values

t;+2t;
6i(ti, ) = grary

Table A.3: Equilibrium demand levels.

14
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Figure A.2: Reproduction of Figure 4.2 showing the partition of the (¢4,tp) space into the different
equilibrium regions.
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Note that there is generally a continuum of adjacent-markets equilibria. Substituting the values of
¢} (ti, t;) into the appropriate inverse demand function yield the equilibrium prices, which are partially

summarized in Table A .4.

Equilibrium configuration | Range of values of ¢; | Equilibrium price P}(t;,t;)
Local monopoly 2>t > 5F % - %
Local monopoly 2>t > 7‘[7'1__(;] e

o —c
Local monopoly PN % vie til1-3rl2—rl+,/ [;:37‘[2—7‘]]——%1
Adjacent-markets As specified in Table A.3 | PM(q¥(t;,t;),t:)
Competitive All feasible values c+ %

Table A.4: Equilibrium prices levels.

A.5. Proof of Proposition 2

Local-monopoly: Based on Proposition 1, a necessary condition for a symmetric local-monopoly
equilibrium to exist is that

1

20M(t) < 3 (A.76)

Based on the bounds on Q" (¢) in Table A.1, it is easily seen that when r < %, this is always true in

the region 2 > ¢ > =3¢, Also, based on the derived values of QM (t) in Table A.1, this condition holds

in % >t > 7,{1:(;,] so long as

2 {ﬂ} < % (A.77)

which reduces to

t> (A.78)

Therefore, a local-monopoly equilibrium exists if 2 > ¢ > M

. Substituting in the appropriate values
of ¢;(t;,t;) and prices from Tables A.3 and A.4, and computing the corresponding profits yields the

expressions in Table 4.1 .

Adjacent-markets: Based on Proposition 1, necessary conditions for a symmetric adjacent-

markets equilibrium to exist are

2" (1) > 5, (A.79)

and

2Q°(t,t) < =. (A.80)

| =
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(A.79) reduces to:
2[r — (]
—

t <

(A.81)

For (A.80) to be true, it must be the case that Q€ (t,t) < 1;". Therefore, it can easily be seen that
for symmetric ¢, given (A.81), and the fact that r < %, the relevant range of values is the set in the

second row, corresponding to

C T—=¢C
fit) = —— & A.82
Q ( J) T[Qti 4 tj] ( )
Substituting (A.82) into (A.80) for symmetric ¢ and rearranging yields:
r—c

4 <t. A.83

{ 3rt } - ( )
(A.81) and (A.83) establish that the range of values in which adjacent-markets equilibria exist is2[r7,_c} >

4[r—c]

t = 3rt

For ¢y = qp = %, substituting into the price function from Tables A.3 and A.4, and

computing profits at this value yields the expressions in Table 4.1

Competitive: Based on Proposition 1, the necessary condition for a symmetric competitive
equilibrium to exist is that:

2Q°(t,t) > (A.84)

N =

which we know from (A.83) is true if:

4 [T?;tc] >t (A.85)

for Q€ (t,t) < 151 and is always true if Q©(¢,¢) > 152, since r < 3. Substituting in the relevant ¢ and
price values from Tables A.3 and A.4, for symmetric ¢, and computing profits at these values yields

the expressions in Table 4.1, and completes the proof.

A.6. Proof of Lemma 3

The proof uses the following properties of the functions R (q,t) and R%(q,;,t;,p;) defined in (A.13)
and (A.34):

1
RM(q,t) = nqUa(q + §7t) <0; (A.86)
M 1 1
Ri5(q,t) = nqUia(q + §’t) +nUs(q + 5»@ < 0; (A.87)
1
Rg(q,ti,tj,pj) = nqUs(q + §,ti) <0, and (A.88)
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. 1 1

(a) Local-monopoly: The form of the profit function for local monopoly equilibria is the same as
the one given by equation (A.13). A straightforward application of the envelope theorem yields

7 (q; (ti 1)), ti, t, Pr(tj, t:)) = R (g} (ti, t5),t:) <O.

Note that an application of the envelope theorem is valid here as the equilibrium values are local

maxima in ¢; — moreover, ¢; is a function of ¢; alone, and PF (tj,t;) is independent of t;.

Adjacent-markets: The argument is based on analyzing the impact of a small increase in ¢;, to

ti +¢. To ease exposition, let (¢%, ¢};) be the equilibrium ¢ pair under the original value of ;.

If the pair (¢, q};) continues to be a feasible adjacent-markets equilibrium pair after ¢; increases
to t; + €, we assume that the firms stay at this ¢ pair. In an adjacent-markets equilibrium, firms still
price on their own monopoly inverse demand functions, and hence a change in the value of ¢; while
holding ¢; constant does not change p;. Therefore, firm ¢’s new profits are RM (¢f,ti +¢), which based
on (A.86) is strictly less than RM (¢, ¢;).

If the pair (¢, q};) is no longer a feasible adjacent-markets equilibrium, we assume that the firms

move to the closest pair (¢%,¢%). The proof then consists of the following steps:

(i) To show that ¢f < ¢/: Assume the converse, i.e., that ¢ > ¢F. Since ¢ is part of an adjacent-

markets equilibrium at the original scope value t;, we know that:

R (qF,ti) > 0. (A.90)
and
RS (qf ti,t5,p5) < 0. (A.91)

Similarly, since ¢f is part of an adjacent-markets equilibrium at the new scope value ¢; + ¢, we know
that:
RY(¢f,ti+¢e) >0. (A.92)

and

18



(A.87) and (A.92) imply that if ¢f > ¢:
RY (g} ti +¢) > 0. (A.94)
Since ¢ is not an adjacent-markets equilibrium for ¢; 4+ ¢, (A.94) must mean that
RS (qF,ti +&,t,p;) > 0, (A.95)

which in conjunction with (A.91) contradicts (A.89). Therefore, we have established that in any new
candidate ¢ pair,

G <q. (A.96)

(ii) To show that profits decline: Given (A.92) and (A.94), (A.96) implies that:
RM(qr ti +¢) > RM(¢5,t; +¢). (A.97)
Also, at the fixed level of quantity ¢, (A.87) implies that
RM (g}, t:) > RM (g} ti +¢), (A.98)

since the increase in ¢; only reduces firm i’s own price, without changing firm j’s price or quantity.
(A.97) and (A.98) imply that:
RM(qr t;) > RM (¢, ti + ¢), (A.99)

which establishes that even when a small increase in ¢; necessitates a change in the equilibrium g
values, it still reduces profits. As a consequence, we can now conclude that for any adjacent-markets
equilibrium,

d .
%T‘J(qzk(tivtj)atiutﬁi[);(tjuti)) <0. (AlOO)

(b) Competitive: The simplicity of the price and ¢ values makes direct computation of the
equilibrium profit function and its total derivative straightforward in this case. Substituting in these

values from Tables A.3 and A.4 | we get:

nr[ti + 2tj]2

Wi(q;lk(ti?tj)vti?tjaP;'k(tj:ti)): 36[t+t] . (Al()l)
i T
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Differentiating both sides with respect to ¢; yields:

d . nrt;[t; + 2]
— (g (ti, ), ti b, PE(tj, ) = ——— 2=
T (g7 (tirt)), tir t; J (¢,%:)) 36[t; + ;]2

A.102

which establishes the result, and completes the proof.

A.7. Proof of Proposition 3

(a) These are simply first-order necessary and second-order sufficient conditions on the payoff functions

for (1/t}) to be a first-stage Nash equilibrium.

(b) Lemma 3(b) shows that under any competitive equilibrium, a unilateral decrease in scope
by firm ¢ (that is, and increase in t¢;) increases revenues; at best, this decrease in scope leaves costs
unchanged (or reduces them). Therefore, firm ¢ can increase profits by increasing ¢;. As a consequence,

the second-stage equilibrium has to be either local-monopoly or adjacent markets.

A.8. Proof of Proposition 4

(a) Lemma 3(a) shows that for any first-stage candidate pair (t4,¢p), which corresponds to a local-
monopoly or adjacent-markets equilibrium subgame, firms have a unilateral incentive to increase their
scope if it leaves them in the same equilibrium configuration. Further, along the AM locus the payoff
functions are continuous and decreasing in t;. Therefore, these cannot be part of any subgame perfect
equilibrium. Along the C'A locus, an increase in t; takes the firm into the adjacent-markets region
while a decrease takes it into the competitive region. Both those changes strictly reduce payoffs. As a
consequence, any pair (t4,tp) along the C'A locus for which a pure-strategy second stage equilibrium

exists is part of a subgame perfect equilibrium.

(b) Given (a), the only feasible symmetric subgame perfect Nash equilibrium is the one under
consideration. For symmetric values of scope, a pure strategy second-stage price equilibrium always
exists. The symmetric value of ¢ that forms the point of transition between the adjacent-markets and
competitive equilibrium regions is at:

3[t A+t B] T

2ta + t5lfta + 2ts]  2[r—d’ (A.103)

and substituting t4 = tp = t, we have t = %[%] From Table A.3, any adjacent-markets equilibrium
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for values of product scope t4 = tg = %[%] has to satisfy:

(A.104)

Substituting the value of ¢ reduces this to i <gqg < % — %for i=A,B,or ¢ =qp = i. Since firms

price in the monopoly region of their demand curves,

1 4 |r—c c—+2r
w=ph=PY (=, < = Al
Substituting the values of ¢ and ¢ into the payoff functions yields the following gross profits:
* * 1
WA:WBZE[T‘—C], (A.106)

which completes the proof.

B. Analysis of a benchmark monopoly model

This section analyzes the model of the main paper when there is just one firm, located at % This
analysis provides the monopoly benchmarks that are used in Section 4 of the main paper. Some
independently interesting results about the incentives a monopolist has to invest in platform scope are

also derived and discussed.

B.1. Pricing and profits

1

Assume that the monopolist is located at 3, without any loss in generality. Recall the definition of

the monopoly inverse demand function from (A.12)
M 1
PPa,t)=Ulg+3,1) (B.1)

This is in fact the inverse demand curve faced by this monopolist. Correspondingly, the monopolist’s
gross profit function — the total profits before accounting for the fixed costs of platform scope are
specified by

RM(q,t) = ng[P" (q,t) — d, (B.2)
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where RM(q,t) was defined in (A.13). Now, define the net profit function II(¢) as the fixed cost of

scope subtracted from the optimal gross profits at scope level ¢:
T(t) = RM(¢*(t),t) — F(1), (B.3)

where ¢*(t) € argmax RM(q,t). PM(q,t) is the actual price charged by the firm, and the monopolist
q

chooses price, not quantity. However, maximizing profits by choosing ¢ € [0, %] is mathematically
identical to maximizing profits by choosing a price that results in demand ng € [0, 5], based on
the bijection defined by P (q,t); the former approach is adopted for mathematical convenience. As

specified in (A.14), the gross profit function reduces to the following functional form:

nqlr —d —ntqle® + 7], 0<q¢< §;
RM(q,t) =< nglr — d —ntre?, for r<qg< B (B.4)

nglr —d —ntqlgll — g - B55), 5 <g<

Finally, define the gross surplus under monopoly as s (q,t) = n [(PM(x,t) — ¢)dz. This is the total

O%Q

surplus before accounting for the fixed cost of scope.

For convenience, Lemma 4 (which was proved in Section A) is reproduced below

Lemma 4 (a) RM (q,t) is strictly concave in q for 0 < q < %, and therefore has no more than

one interior mazximum in this interval.

(b) In the interval * St <q< %, RM(q,t) is always mazimized at one of its two end-points. That

is, either RM(15-,¢) > RM(q,t) for all g € [55£, 3], or RM(3,t) > RM(q,t) for all q € [157, 4]

Based on Lemma 4, for a fixed level of ¢, we can characterize the optimal choice of price and profits,

and the resulting optimal demand:

Proposition 5. (a) If 2 > t > [TTZ,C}, then q*(t) = M, PM(q*(t),t) = (% - %)and

2t]3

RM(q*(t),t) = % %

(b) If 53¢ > t > 2L then ¢ (1) = %7, PM(q"(t),1) = 75¢ and RV (¢"(t), 1) = nlr=? and

(C) If T[Z[i?/c;—r] >t > 0, then q*(t) = %, P]w(q*(t),t) — (T_tr[i—r])’ and RM(q*(t),t) _

n (55 - H)

Proof. Lemma 4 has established that over the range ¢ € [0, 15", the function RM (g, ) is strictly

concave and has at most one interior maximum, and that over the range q € [1%’", %], it is maximized
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at one of its end-points. Since % is contained in [0, %], to find the global maximum of RM(q,1),

all one needs to do is to compare the value of the maximum of R (q,t) over q € [0, 1%’] with the
end-point value RM (4,1).

The interior maximum in ¢ € [0, 35%] could occur in either [0,%], or in [4, 5] — the functional

form of RM(q,t) is different in each of these intervals. There are therefore three candidate maxima.

(1) Interior maximum in [0, ]: this value g} solves RM(q%,t) = 0, which, based on (B.4), reduces

to:
r2t
T C ]

Y L B.5
a Ta (B.5)

and is relevant only if ¢; < 5. Using (B.5), this condition simplifies to:
t>——. (B.6)

(2) Interior maximum in [5, 152 this value ¢} solves R} (g}, t) = 0, which, based on (B.4), solves

to:
r—=cC
P — B.7
qp It 9 ( )

and is relevant only if § < ¢j < 1;". Using (B.7), this simplifies to:

r—co,, r-c
2 T Tl =)

- (B.8)

(3) End-point maximum at %: This is relevant only if RM (%, t) > 7( 157',t), which we know from

(A.26) occurs only when

4[r — (]
< —. B.

~ r[3—2r] (B.9)
Now, for r < 1, it is easily verified that ;g_}ﬂ] < =*. In conjunction with (B.8) and (B.9), (B.6)

establishes that ¢ is the global maximizing value for ¢ > =3¢,

Comparing RM (3,t) to RM (g}, t) yields:
1 ,, . 2[r — (]

RM(Z,t) > RM (g} t) if t < ————. B.10
(2 )— (Qb ) _T[Q—\/g] ( )

Again, it is straightforward to verify that ré[j:/;}_ﬂ < T‘l[g:ZcTh for all » < 1. Therefore, RM (%’t) >
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Figure B.1: Variation in monopoly price and gross profits as scope varies.

RM (g;,t) only in the region where RM(%, t) > RM(%,t). Finally, for r < %:

r—c 2[r — ] r—c

2 T r2—2r] T r[l—1]

(B.11)

Therefore, g; is the global maximizer for *5* > ¢ > %, after which RM (q,t) is maximized at

its end-point % Substituting these ¢ values into the inverse demand function and into the revenue

function and simplifying completes the proof. =

A number of results are established in Proposition 5. Firstly, as the scope of the product (1/%)

increases, the quantity supplied by the monopolist increases steadily upto a threshold value ¢ =

ré[i?/‘;}—r], at which point it increases discontinuously to 2, and all consumers buy the product. It

PR
remains at this level for further increases in scope. On the other hand, the corresponding optimal

HQ'C until

price rises steadily in scope upto a threshold value of ¢, then remains constant at a value of
the point £ = % At this point, it is profit-maximizing for the monopolist to drop the price to
the point where all consumers buy the product. A further increase in scope does not change demand,
but results in a steady increase in price. The variation of price and profits as scope varies are depicted

in Figure B.1.

B.2. Profitability and welfare analysis

Figure B.1 depicts that the level of gross profits increases continuously with scope, and the rate of
increase in profits with scope jumps substantially when ¢*(¢) transitions to % Correspondingly, total

surplus increases monotonically upto ¢, at which point it increases discontinuously (since the entire
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set of consumers now consume the product), and then continues to increase, albeit at a slower rate

than profits, as scope increases.

Consumer surplus, which is the difference between total surplus s (¢*(t),t) and gross profits
RM{(q*(t),t), increases monotonically with scope upto the threshold #, and is maximum immediately
after ¢*(t) changes discontinuously to % It subsequently decreases rapidly as platform scope increases.
This pattern is both intuitive and consistent with previous research. As platform scope increases,
this makes consumers more homogeneous with respect to the value they place on the product. This
facilitates higher surplus extraction by the monopolist — in fact, at ¢ = 0, the monopolist’s profits are
equal to the entire total surplus, since the product provides identical value to all consumers. This
is similar to results derived in the limit for the monopoly bundling of information goods (Bakos and
Brynjolfsson 1999). Analogous reasoning leads one to expect consumer surplus to decrease as the

breadth of functionality requirements r increases, and this is in fact the case.

The preceding analysis is with respect to an exogenously specified level of platform scope. If scope
is endogenous, the monopolist will choose ¢ to maximize the function II(¢) as defined in (B.3). Define
iy, as the optimal level of ¢ chosen by the monopolist when qg*(t) < % (that is, under partial market
coverage) and t} as the level of scope chosen by the monopolist when ¢*(¢) = 1 (under full market

coverage).

Correspondingly, a social planner who chooses the socially efficient level of scope, but lets the
market set prices, would choose a different level of scope, defined by t* = arg max (sM(g*(t),t) — F(t)).

The following proposition benchmarks monopoly choices with the social optimum.

Proposition 6. (a) Under partial market coverage, the monopolist under-invests in platform scope;
that is, (1/t;) < (1/t*)
(b) Under full market coverage, the monopolist over-invests in platform scope as compared to the

socially optimal level; that is, (1/t}) > (1/t*).

Proof. The slope of the gross total surplus function s™ (¢*(t),t) with respect to ¢, can be computed

to be:

_ n[3r—1] 0<t< 2[r—]

24 r[2—v/2r]
A/ % n[rtt24+9[r—c? r—c r—c
M(q*(t),8) = {  —ntesld] ré[#z}—r <t<ld (B.12)
n[2[r—c]+r2t 4lr—c]—r2t r—c
_[[915] ] [ 3}t : [7,2]§t§2

Similarly, the slope of the gross profit function with respect to ¢, can be shown to be:
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_nr[2877°] 0<t< 2[r—¢]

’ r[2—v/2r]
L a* nfr—c)? r—c e
n[7lr—c?+[r[rt—1]+c]? r—c
- ]12\[/?;2 e 4[r—f}—r2f,v T St<2

Using r < %, 0<t<2andc< P(%, t) establishes the following:

RM(q*(t),t) < sM(Z,t)for0<t< - T_@] (B.14)
1 2lr—c r—c

RY(G0.) > (G for 2E < e e Lo (B.15)

RM(q*(t),t) > sé”(%,t) for S << (B.16)

Note from Proposition 5 that for 0 < ¢t < T[;[i\_/g—ﬂ, full market coverage is optimal and hence the

corresponding optimal level of product scope will be t}i. For Té[ii/é]—r] < t < 2, partial market coverage

is optimal and hence the optimal level of scope is given by 7.

Now, the socially optimal level t* satisfies:
3 (q*(t),t) = Fi(t). (B.17)

while the profit-maximizing levels ¢%,¢7 satisfy
m2(q*(t), 1) = Fi(t). (B.18)

Since F1(t) is strictly increasing (because F is strictly convex), (B.14) — (B.18) imply that ¢} < ¢* and
ty, > t*, thus establishing the result. ®

The results of Proposition 6 are illustrated in Figure B.2. Recall that a lower value of ¢ corresponds
to a higher value of scope. When maximizing net profits II(¢), the monopolist equates the marginal
increase in gross profits R3!(q*(t),t) to the marginal increase in fixed cost of scope Fj(t). Corre-
spondingly, the socially optimal level of scope is where the marginal increase in gross total surplus

sM(q*(t),t) equals the marginal increase in fixed cost of scope Fi(t).

The welfare analysis above assumes that price is still chosen by the monopolist. However, even if we
consider the first best solution, in which the social planner always mandates full market coverage at the
socially-optimal level of platform scope, the results of Proposition 6 still hold. The full-market coverage

result is intuitive when one recognizes that when one increases scope, the value of the product to the
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Figure B.2: Depicts the relative values of the monopolist’s optimal choice of ¢ and the socially optimal
choice of t for two different convex fixed cost functions. When F'(t) is strictly convex, the Fi(t)
curves slope upwards. Therefore, when the marginal cost of scope is relatively low, the monopolist’s
optimal choice of scope occurs in the full-market coverage region, where the marginal gross profit curve
R}!(q*(t),t) is below the marginal gross total surplus curve s}’ (q*(t),t), and leads to over-investment
in scope (tj < t*). On the other hand, in the partial-market coverage region, the marginal gross
profit curve lies above the marginal total surplus curve. If the marginal cost of scope is high, the
monopolist’s choice occurs in this region, and consequently ¢ < t*.

marginal consumer (which determines price) increases faster than the value to the average consumer

(which determines marginal total surplus). The monopolist therefore over-invests in scope.

This indicates that the market generally does not provide the socially efficient level of scope.
What is surprising is the direction in which the market errs. Intuitively, under complete market
coverage, when there is no incentive to recruit new consumers, one would expect firms would slacken
on their provision of platform scope. However, we find that this is precisely the scenario under which
firms provide a level of scope which is socially excessive. Correspondingly, when only a subset of
the consumers in the market purchase the product, the firms underprovides scope. This result is
independent of market structure — it persists under both single-product monopoly and duopoly, and
we can easily show that it holds for multi-product monopoly as well.

It is likely that universal access will become a social priority for mobile telephony and Internet
access, as the use of these services supersede wireline telephony as the primary mode of access to emer-
gency police or medical services, or simply if public policy dictates equitable access to electronic forms

of commerce and work. Our results establish that as progress in the underlying digital technologies
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reduces the marginal cost of platform scope, these social objectives can often be achieved without

resorting to regulatory intervention.

B.3. Larger breadth of functionality requirements

When one admits higher values of r, the value function derived in (A.4) changes. For r > %, this

function U(y, ) is:

r=t[GEF -+ G-, <y HY
Ul:t) =\ r=t26G)+GUF —y) - GU -y 137])], %
3= Gly -5 -G-y- 5], 4

IN
5

(B.19)

VAN

IA
<
IA

—

This new value function shares all the properties presented in Lemma 1. The corresponding gross

profit function is:

R™(q,t) ={ nglr —d —ntqlq[l —r] + ZF], 3 <q< 5 (B.20)

2
1— 2
nafr —d —ntqle[l —q) = "), §<q<y
While the ranges of ¢ values are different, reflecting the fact that § > 1% for r > %, the actual
functional form of RM(gq,t) is the same in two of the three segments. Results analogous to Lemma 4
and Proposition 5 are obtained for the optimal demand, price and profits. The main effect of increasing
r beyond % is that full market coverage becomes increasingly more likely. This is illustrated most

starkly when marginal costs are zero. In this case, full market coverage is always optimal. That is,

when ¢ = 0, for any 7 > 1, and for any value of ¢t < 2, ¢*(¢t) = 3, P(¢*(t),t) = [r — tr[z{ﬂ, and

RM(g*(t),t) =n {% — @]
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